期刊文献+

合流调蓄系统多目标GA优化工程应用

Engineering Application of Multi-objective GA Optimization Model in Combined Regulative Storage System
下载PDF
导出
摘要 合流制调蓄设计与优化是城市雨水面源污染控制的重要内容。考虑排水系统的排水能力和污染控制效果的同时,又需确保系统工程的经济效益,是当前合流制多目标优化亟待解决的现实问题之一。建立以工程造价和运行费用为目标函数,以不发生溢流、管网水力参数为约束条件的合流制多目标优化模型,利用遗传算法(GA)寻求最优工程设计方案,提高投资回报率。将所建模型应用于上海某区域的优化设计,获得了较佳的效果,且相对于手工计算提高了准确度,减少10%~20%的投资,减少了对环境的污染。其成果对截流式合流制排水系统评估与规划具有现实和推广意义。 Design and optimization of combined system regulative storage are the important contents of urban rainwater non-point source pollution control. At the same time to consider the drainage capacity and pollution control effect of drainage system, it is required to ensure the economic benefit of system engineering, and it is one of practical problems urgently to be solved for the multi-objective optimization of current combined system. The combined system multi-objective optimization model is established by taking the engineering construction cost and operating cost as the objective functions, and taking the no-overflow and pipe network hydraulic parameters as the constraint conditions. The genetic algorithm(GA) is used to seek the optimized engineering design scheme and to increase the return on investment(RO). The established model is applied in the optimization design of an area in Shanghai, which achieves the better effect, and improves the degree of accuracy, decreases the 10%~20% investment and reduces the pollution on the environment relatively to the hand computation. The achievements have the practical and popularizing significances for the assessment and planning of the intercepted combined drainage system.
作者 陆松柳
出处 《城市道桥与防洪》 2018年第6期117-121,共5页 Urban Roads Bridges & Flood Control
基金 上海市科技人才计划项目(15QB1403500)
关键词 城市面源污染 合流调蓄 多目标优化模型 GA算法 urban non-point source pollution combined regulative storage multi-objective optimization model genetic algorithm GA)
  • 相关文献

参考文献3

二级参考文献22

  • 1李玉榕,项国波.一种基于多目标遗传算法的非线性控制器[J].计算机仿真,2004,21(5):61-63. 被引量:5
  • 2卢香清,谭迎军.有关多目标遗传算法的研究[J].南阳师范学院学报,2004,3(9):62-64. 被引量:11
  • 3陈国良 王煦法 等.遗传算法及应用[M].北京:人民出版社,1999..
  • 4Holland J H. Adaptation in natural and artificial systems[M]. New York:The University of Michigan Press,1975.
  • 5Schaffer J D. Multiple objective optimization with vector evaluated genetic algorithms[A]. Proc. of International Conference on Genetic Algorithms and their Appllcations[C], 1985:93-100.
  • 6Goldberg D E. Genetic algorithms in search, optimization, and machine learning[M]. Reading, MA:Addison-Wesley, 1989.
  • 7Fonseca C M, Fleming P J. Multiobjective optimization and multiple constraint handling with evolutionary algorithms -- Part I : a unified formulation[J]. IEEE Transactions on Systems, Man and Cybernetics, 1998,28(1):26-37.
  • 8盛昭翰.最优化方法基本教程[M].南京:东南大学出版社,1992..
  • 9Ying Gao,Lei Shi Pingjing Yao.Study on Multi-Objective Genetic Algorithm[C].Proceedings of the 3th World Congress on Intelligent Control and Automation,2000.
  • 10Goldberg D E.Genetic algorithms in search optimization and machine learning[M].Reading,MA:Addison-Wesley,1989.

共引文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部