期刊文献+

考虑不确定性因素的配电网分布式电源选址定容 被引量:4

Locating and Sizing of Distributed Generations in Distribution Network Considering Uncertainties
下载PDF
导出
摘要 分布式电源大规模并入配电网对其经济运行和电能质量等产生了较大影响,对其进行合理配置至关重要。分布式电源的出力和配电网负荷具有不确定性,提出一种计及分布式电源出力和节点负荷不确定性因素的配电网分布式电源优化布置模型。首先,以网络损耗最小、系统电压稳定性最高、电压偏移最小为优化目标,利用机会约束规划建立分布式电源优化选址定容模型;然后,采用广义回归神经网络和多目标粒子群算法对模型进行求解,求得其Pareto解集;最后以IEEE 37节点配电网算例对所提方法的有效性进行验证。 Distributed generations(DGs)have been interconnected to distribution networks in large-scale,which has affected the economic operation and power quality a lot.It is important to allocate the DGs reasonably.The output of DGs and the loads in distribution networks are of uncertainty,so this paper proposes the optimization layout model of DGs in distribution network with considering uncertainty factors of DGs' power output and node load.Firstly,taking the minimization of the network loss,the maximum of the voltage stability and the minimization of the voltage deviation as the optimization targets,we establish the locating and sizing model of DGs using chance-constrained programming method.Then,we solve the model using generalized regression neural networks and multi-objective particle swarm optimization algorithm and obtain the Pareto optimal solutions.Finally,we verify the validity of the proposed model through IEEE 37 bus distribution system.
作者 王丽娜 WANG Lina(Shandong Electric Power Engineering Consulting Institute Co., Ltd. , Jinan 250013, Shandong Province, China)
出处 《分布式能源》 2018年第2期23-28,共6页 Distributed Energy
关键词 分布式电源 不确定性 多目标规划 广义回归神经网络 多目标粒子群 distributed generation uncertainties multi-objective programming generalized regression neural networks multi-objective particle swarm optimization
  • 相关文献

参考文献7

二级参考文献95

共引文献325

同被引文献50

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部