期刊文献+

Super-Resolution Track-Density Imaging Reveals Fine Anatomical Features in Tree Shrew Primary Visual Cortex and Hippocampus 被引量:4

Super-Resolution Track-Density Imaging Reveals Fine Anatomical Features in Tree Shrew Primary Visual Cortex and Hippocampus
原文传递
导出
摘要 Diffusion-weighted magnetic resonance imaging(d MRI) is widely used to study white and gray matter(GM) micro-organization and structural connectivity in the brain. Super-resolution track-density imaging(TDI) is an image reconstruction method for d MRI data, which is capable of providing spatial resolution beyond the acquired data, as well as novel and meaningful anatomical contrast that cannot be obtained with conventional reconstruction methods. TDI has been used to reveal anatomical features in human and animal brains. In this study, we used short track TDI(st TDI), a variation of TDI with enhanced contrast for GM structures, to reconstruct directionencoded color maps of fixed tree shrew brain. The results were compared with those obtained with the traditional diffusion tensor imaging(DTI) method. We demonstrated that fine microstructures in the tree shrew brain, such as Baillarger bands in the primary visual cortex and the longitudinal component of the mossy fibers within the hippocampal CA3 subfield, were observable with st TDI,but not with DTI reconstructions from the same d MRI data.The possible mechanisms underlying the enhanced GM contrast are discussed. Diffusion-weighted magnetic resonance imaging(d MRI) is widely used to study white and gray matter(GM) micro-organization and structural connectivity in the brain. Super-resolution track-density imaging(TDI) is an image reconstruction method for d MRI data, which is capable of providing spatial resolution beyond the acquired data, as well as novel and meaningful anatomical contrast that cannot be obtained with conventional reconstruction methods. TDI has been used to reveal anatomical features in human and animal brains. In this study, we used short track TDI(st TDI), a variation of TDI with enhanced contrast for GM structures, to reconstruct directionencoded color maps of fixed tree shrew brain. The results were compared with those obtained with the traditional diffusion tensor imaging(DTI) method. We demonstrated that fine microstructures in the tree shrew brain, such as Baillarger bands in the primary visual cortex and the longitudinal component of the mossy fibers within the hippocampal CA3 subfield, were observable with st TDI,but not with DTI reconstructions from the same d MRI data.The possible mechanisms underlying the enhanced GM contrast are discussed.
出处 《Neuroscience Bulletin》 SCIE CAS CSCD 2018年第3期438-448,共11页 神经科学通报(英文版)
基金 supported by grants from the National Basic Research Development Program of China (2011CB707800) the National Natural Science Foundation of China (21790390, 21790392, and 61371014)
关键词 Track-density imaging Diffusion tensor imaging Tree shrew Primary visual cortex HIPPOCAMPUS Track-density imaging Diffusion tensor imaging Tree shrew Primary visual cortex Hippocampus
  • 相关文献

同被引文献66

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部