期刊文献+

改进微分进化算法在压缩感知中的应用

Application of Improved Differential Evolution Algorithm in Compressed Sensing
下载PDF
导出
摘要 压缩感知是基于信号稀疏性提出的采样理论,它在压缩成像、医学图像、雷达成像、天文学、通信等领域都有广泛的应用.压缩感知问题的求解本质上是一个优化问题,本文在微分进化算法的基础上对其改进,提出了一种改进微分进化算法,将其应用于压缩感知问题的求解中,取得了良好的效果. Compressed sensing is a sampling theory based on the sparsity of the signal. It has been widely used in the fields of compression imaging, medical imaging, radar imaging, astronomy, communication, and so on. The solution of the compressed sensing problem is essentially an optimization problem, on the basis of differential evolution algorithm.This study proposed an improved differential evolution algorithm, and the algorithm is applied to the solution of compressed sensing problem, and has achieved sound results.
作者 闵涛 李艳敏 MIN Tao;LI Yan-Min(School of Science, Xi'an University of Technology, Xi'an 710054, China)
出处 《计算机系统应用》 2018年第6期124-128,共5页 Computer Systems & Applications
基金 国家自然科学基金(51679186) 青年科学基金(11601418)
关键词 微分进化算法 改进微分进化算法 压缩感知 differential evolution algorithm improved differential evolution algorithm compressed sensing
  • 相关文献

参考文献3

二级参考文献45

  • 1Menon P K A, Kim E C, Cheng V H L. Optimal Trajectory Synthesis for Terrain-Following Flight [J]. Journal of Guidance, Control, and Dynamics, 1991,14 (4) : 807-813.
  • 2Asseo J. Terrain Following/Terrain Avoidance Path Optimization Using the Method of Steepest Descent [ M ]. IEEE NAECON,1988:1 128-1 136.
  • 3Loizou P C.Speech enhancement:theory and practice[M].USA:CRC Press,2007.
  • 4Loizou P C,Kim G.Reasons why current speech-enhancement algorithms do not improve speech intelligibility and suggested solutions[J].IEEE Transactions on Audio,Speech,and Language Processing,2011,19(1):47-56.
  • 5Donoho D.Compressed sensing[J].IEEE Trans on Information Theory,2006,52(4):1289-1306.
  • 6Baraniuk R G.Compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 7Donoho D,Tsaig Y.Extensions of compressed sensing[J].Signal Processing,2006,86(3).
  • 8Griffin A,Tsakalides P.Compressed sensing of audio signals using multiple sensors[C]//Proc 16th European Signal Processing Conference(EUSIPCO’08),Lausanne,Switzerland,2008.
  • 9Giacobello D,Christensen M G,Murthi M N,et al.Retrieving sparse patterns using a compressed sensing framework:applications to speeeh coding based on sparse linear prediction[J].Signal Processing Letters,2010,17(l):103-106.
  • 10Sreenivas T V,Kleijn W B.Copressive sensing for sparsely excited speech signal[C]//Proceedings of the 2009 IEEE International Conference on Acoustics,Speech and Signal Processing,Taipei,Taiwan,China,2009:4125-4128.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部