摘要
针对大规模数据分类时计算时间长以及分类精度下降等问题,提出使用张量分解求解LDA主题模型参数,实现对海量网络数据的采集、分类、挖掘.该方法使用矩量法将LDA模型求解转化为低维的张量分解问题,通过分解和反射进行参数的传递,运用大数据平台Spark的进行分布式计算.实验结果表明,改进的模型参数计算方法在时间效率和困惑度方面都得到了提升,并且分类信息更加直观,更加适用于大规模网络数据分类工作.
Aiming at the problems of large computation time and low classification time, this study presents an improved parameter estimation model for LDA by using the method of tensor decomposition, which can collect, classify, and mine massive network data. Using the method of moments, the LDA model calculation is transformed into low-dimensional tensor decomposition, and the parameters are transferred by decomposition and reflection. The large data platform Spark is used for distributed computation. The experimental results show that the model has been improved in terms of running time and perplexity, and the classification information display is more intuitive, which is more suitable for large-scale network data classification.
作者
马年圣
卞艺杰
唐明伟
MA Nian-Sheng;BIAN Yi-Jie;TANG Ming-Wei(Business School, Hohai University, Nanjing 211100, China;School of Management Science and Engineering, Nanjing Audit University, Nanjing 211815, China)
出处
《计算机系统应用》
2018年第6期151-157,共7页
Computer Systems & Applications
基金
国家自然科学基金青年项目(71603114)
江苏省社会科学基金青年项目(16TQC004)
中国博士后基金面上项目(2015M581776)