摘要
广义相对论中,引力波是具波的形式并且辐射能量的真空时空度量,而Bondi-Sachs度量是这类度量的自然描述之一.本文将概述零宇宙常数时Bondi-Sachs度量的Bondi能量动量非负性定理、Bondi能量动量和ADM(Arnowitt-Deser-Misner)能量动量的关系,以及非零宇宙常数时BondiSachs度量的一类自然边值条件及其在该边值条件下的peeling性质、B-引力波的一些新特性.
In general relativity, gravitational waves are wave-like metrics which radiate energy, and Bondi-Sachs metrics are one of naturM metrics describing them. In this paper, we provide a short review on positivity of the Bondi energy-momentum and the relation between the Bondi energy-momentum and the ADM energy-momentum for Bondi-Sachs metrics when the cosmological constant is zero. We also review a natural boundary condition of the Bondi-Sachs metrics when the cosmological constant is nonzero, and present the peeling property as well as some new features of gravitational B-waves under this boundary condition.
出处
《中国科学:数学》
CSCD
北大核心
2018年第6期849-858,共10页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11571345)资助项目