期刊文献+

纳晶Cu-Ag双峰材料热传导行为特性研究

Thermal Conductivity Behavior of Bimodal Nanocrystalline Cu-Ag Material
原文传递
导出
摘要 采用热压烧结法制备了具有双峰结构的纳晶Cu-Ag复合材料和纳晶Cu金属材料,采用激光法测定了试样在不同温度(200~400 K)下的热导率。测量结果显示,2种纳晶金属材料热导率随晶粒尺寸的增加而增加,并且随温度的降低而减小。在300 K下平均晶粒尺寸为150 nm的纳晶Cu-Ag双峰材料试样的热导率为163.45 W/m·K,分别占粗晶Cu和粗晶Ag的40.7%和38.1%。本研究引入并改进了卡皮查热阻理论模型对试样热导率进行了数值计算,计算结果与实验数据基本一致,纳晶Cu-Ag双峰材料热导率明显低于单晶Cu/Ag块体,纳晶金属材料热导率随着晶粒尺寸的增加而增加,验证了纳晶Cu-Ag双峰材料热导率在一定的晶粒尺寸范围内具有尺寸效应。 Bimodal nanocrystalline (nc) Cu-Ag composites and nc Cu were prepared by a high pressure sintering method in an argon atmosphere. The samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The thermal conductivity of the samples with an average grain size from 50 nm to 270 nm was measured at 200-400 K by a laser method. The results show that the thermal conductivity of nc Cu-Ag and nc Cu increases with the grain size or temperature increasing. At 300 K, the thermal conductivity of the bimodal nc Cu-Ag with an average grain size of 150 nm is 163.45 W/m.K, which is 40.7% and 38.1% of that of the coarse grain Cu and Ag, respectively. The thermal conductivity of the samples was also measured by the modified Kapitza thermal resistance model and the theoretical calculations are in good agreement with experimental results. The thermal conductivity of bimodal nc Cu-Ag is much lower than that of monocrystalline Cu/Ag bulks. It is concluded that the thermal conductivity of bimodal nc Cu-Ag is increased with the grain size increasing, which exhibits an obvious size effect in a certain grain size range.
作者 刘英光 张士兵 韩中合 Liu Yingguang;Zhang Shibing;Han Zhonghe(North China Electric Power University, Baoding 071003, China)
机构地区 华北电力大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2018年第5期1478-1484,共7页 Rare Metal Materials and Engineering
基金 国家自然科学基金(51301069) 河北省自然科学基金(E2014502073) 中央高校基本科研业务费(2014MS114)
关键词 Cu-Ag双峰材料 热导率 晶粒尺寸 卡皮查热阻 bimodal nanocrystalline Cu-Ag thermal conductivity grain size Kapitza resistance
  • 相关文献

参考文献1

二级参考文献23

  • 1R西格尔 JR豪厄尔.热辐射传热[M].北京:科学出版社,1990..
  • 2华钰超,董源,曹炳阳.2013,物理学报,62,244401.
  • 3Toberer E S, Baranowski L L, Dames C 2012 Annu. Rev. Mater. Res. 42 179.
  • 4Ju Y, Goodson K E 1999 Appl. Phys. Lett. 74 3005.
  • 5Liu W, Asheghi M 2004 Appl. Phys. Lett. 84 3819.
  • 6Asheghi M, Leung Y, Wong S, Goodson K E 1997 Appl. Phys. Lett. 71 1798.
  • 7Ju Y 2005 Appl. Phys. Lett. 87 153106.
  • 8Hopkins P E, Reinke C M, Su M F, Olsson III R H, Shaner E A, Leseman Z C, Serrano J R, Phinney L M, El-Kady I 2010 Nano Lett. 11 107.
  • 9Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A 2003 Appl. Phys. Lett. 83 2934.
  • 10Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard III W A, Heath J R 2008 Nature 451 168.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部