摘要
为了提高三相永磁同步电机(PMSM)控制系统的性能,基于反双曲正弦函数的扩张状态观测器(ESO)技术,提出一种新颖的无速度传感器自适应滑模有限控制集模型预测控制(FCS-MPC)策略,采用ESO技术构造PMSM系统转速和反电动势的观测器,实现对电机转速和反电动势快速准确估计.用带有负载ESO的自适应滑模控制作为系统的转速调节器,以提高系统的鲁棒性;利用基于快速矢量选择的FCS-MPC策略,达到减少转矩脉动、降低系统算法计算量的目的.仿真结果表明,基于ESO的无速度传感器自适应滑模FCS-MPC策略能够使PMSM系统可靠稳定运行,达到满意的转矩和转速控制效果.与基于积分型滑模面的自适应滑模FCS-MPC策略相比,所提出的控制策略能使系统具有良好的动态性能和抗负载干扰能力.
In order to improve the control performance of the three-phase permanent magnet synchronous motor(PMSM)system, a novel sensorless adaptive sliding mode finite control set model predictive control(FCS-MPC) strategy is proposed based on the speed extended state observer(ESO) of the arc-hyperbolic sine function. The ESO is used to construct the speed and the back electromotive force(EMF) observer of the PMSM system to realize the estimation of the motor's speed and back EMF fast and accurately. The adaptive sliding mode control with the load ESO is used as the speed regulator of the system to improve the robustness of the system. The FCS-MPC strategy based on fast vector selection is used to reduce the torque ripple and reduce the computational complexity of the system algorithm. The simulation results show that the PMSM system can run reliably and stably with the sensorless adaptive sliding mode FCS-MPC strategy based on the ESO, and achieve satisfactory control effects of torque and speed. Compared with the adaptive sliding mode FCS-MPC strategy based on the integral sliding mode, the proposed strategy enables the PMSMs to possess better command-following characteristics and stronger robustness in the presence of various of reference speed and load torque.
作者
张斌
许伟奇
李坤奇
ZHANG Bin;XU Wei-qi;LI Kun-qi(School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Chin)
出处
《控制与决策》
EI
CSCD
北大核心
2018年第6期999-1007,共9页
Control and Decision
基金
国家自然科学基金项目(61461023)
甘肃省教育厅项目(2016B-036)
关键词
扩张状态观测器
自适应滑模控制
有限控制集模型预测控制
快速矢量选择
永磁同步电机
extended state observer
adaptive sliding mode control
finite control set model predictive control
fast vector selection
permanent magnet synchronous