摘要
在线极限学习机对样本数据分批或分块地学习,适用于分析生产过程的在线数据,进而检测生产过程的故障.为了提高检测的准确性和快速性,提出一种权重变化和决策融合的极限学习机(ELM)在线故障检测方法.该方法在学习过程中增加被当前数据监控模型错误预测的新样本权重,同时在数据监控模型中引入决策级融合的方法,提高模型的综合决策能力.利用UCI数据集和TE过程进行仿真实验对比,对比结果表明所提出的方法在训练时间和检测准确率上都具有很好的性能.
Online sequential extreme learning machine learns samples one by one or chunk by chunk, so it is appropriate to analyze online process data and to detect system faults. To improve the detection accuracy and rapidity, a new online extreme learning machine algorithm with varying weights and decision level fusion has been proposed, which increases the weights of the new samples predicted wrongly by current data monitoring model in learning, and introduced decision level fusion to improve integrated decision-making ability of the model. Performance comparisons of the method are presented using UCI datasets and Tennessee Eastman process. The results show that the proposed algorithm produces comparable or better performance with higher accuracies and lower training time.
作者
罗家祥
罗丹
胡跃明
LUO Jia-xiang;LUO Dan;HU Yue-ming(School of Automation Science and Engineering, South China University of Technologh, Guangzhou 510640, China;Engineering Research Center of Precision Manufacturing Equipments, Ministry of Education, South China University of Technology, Guahgzhou 510640, China)
出处
《控制与决策》
EI
CSCD
北大核心
2018年第6期1033-1040,共8页
Control and Decision
基金
国家科技重大项目(2014ZX02503-3)
国家自然科学基金项目(06573146)
关键词
故障检测
在线极限学习机
权重变化
决策级融合
fault detection
online extreme learning machine
varying weights
decision level fusion