期刊文献+

基于压缩感知的传感器网络中概率负载均衡的数据路由协议 被引量:5

Probability load balance routing protocol based on compressive sensing in wireless sensor networks
原文传递
导出
摘要 基于混合压缩感知(CS)理论,提出一种负载有效的路由协议.考虑分簇网络结构,簇内节点传输原始数据到簇头,簇头对数据进行压缩再通过最小生成树发送到sink.为防止簇头节点负载不均衡造成网络不能正常通信,提出负载度的概念并设计基于CS的负载均衡策略;然后,研究概率负载均衡策略以均衡所有节点的负载流量;最后,提出分布式补偿算法构建分簇网络并实现数据汇聚功能.仿真结果表明,所提出方法在提高网络生存时间及能耗均衡方面均优于传统方法. A load-efficient data aggregation strategy in wireless sensor networks(WSNs) is proposed based on compressive sensing(CS). A cluster-based network is constructed, where all nodes send the raw data to their corresponding cluster heads(CHs) and the CHs send the compressed data to the sink through multi-hop path. To realize the load balance among all cluster heads in the networks, an uneven clustering strategy is proposed, and a CS-based load balance(CSLB) strategy is designed. Then a more efficient strategy of Probability-CSLB is proposed to balance the traffic load among all nodes in the network. Finally, a distributed compensation algorithm based on our model.Extensive experiments validate that our scheme can prolong the network lifetime and balance the energy consumption when compared with other schemes.
作者 丁旭 黄成 吴晓蓓 徐志良 DING Xu;HUANG Cheng;WU Xiao-bei;XU Zhi-liang(School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China;School of Computer Science, University of California at Davis, Davis 95616, USA)
出处 《控制与决策》 EI CSCD 北大核心 2018年第6期1041-1047,共7页 Control and Decision
基金 江苏高校优势学科建设工程项目 国家留学基金委联合培养项目
关键词 无线传感器网络 数据汇聚 混合压缩感知 负载度 非均匀分簇 wireless sensor networks data aggregation hybrid compressive sensing load degree uneven clustering
  • 相关文献

参考文献1

二级参考文献13

  • 1Liu Y H. GreenOrbs: A long-term kilo-scale wireless sensor network system in the forest[EB/OL]. [2015-4-12]. http://www.greenorbs.org/all/greenorbs.htm.
  • 2Heinzelman W, Chandrakasan A, Balakrishnan H. An application-specific protocol architecture for wireless microsensor networks[J]. IEEE Trans on Wireless Communications, 2002, 1(4): 660-670.
  • 3Salarian H, Chin K W, Naghdy E An energy-efficient mobile-sink path selection strategy for wireless sensor networks[J]. IEEE Trans on Vehicular Technology, 2014, 63(5): 2407-2419.
  • 4Li Z J, Li M, Wang J L, et al. Ubiquitious data collection for mobile users in wireless sensor networks[C]. Proc of the 30th IEEE Int Conf on Computer Communications. Shanghai, 2011: 2246-2254.
  • 5Gu Y Y, Bozdag D, Ekici E. Mobile element based differentiated message delivery in wireless sensor networks[C]. Proc of the 7th IEEE Int Symposium on a World of Wireless, Mobile and Multimedia Networks. Buffalo, 2006: 83-92.
  • 6Chen J H, Salim M B, Matsumoto M. Modeling the energy performance of event-driven wireless sensor network by using static sink and mobile sink[J]. Sensors, 2010, 10(12): 10876-10895.
  • 7Dijkstra E W. A note on two problems in connexion with graphs[J]. Numberische Mathematik, 1959, 1(1): 269-271.
  • 8刘安丰,任炬,徐娟,曾志文,陈志刚.异构传感器网络能量空洞分析与避免研究[J].软件学报,2012,23(9):2438-2448. 被引量:39
  • 9张希伟,戴海鹏,徐力杰,陈贵海.无线传感器网络中移动协助的数据收集策略[J].软件学报,2013,24(2):198-214. 被引量:58
  • 10饶卫振,金淳,陆林涛.考虑边位置信息的求解ETSP问题改进贪婪算法[J].计算机学报,2013,36(4):836-850. 被引量:20

共引文献6

同被引文献47

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部