期刊文献+

Application status and comparison of dioxin removal technologies for iron ore sintering process 被引量:2

Application status and comparison of dioxin removal technologies for iron ore sintering process
原文传递
导出
摘要 The emission of dioxins from the iron ore sintering process is the largest emission source of dioxins, and the reduction in dioxin emission from the iron ore sintering process to the environment is increasingly important. Three approaches to control the emission of dioxins were reviewed: source control, process control, and terminal control. Among them, two terminal control technologies, activated carbon adsorption and selective reduction technology, were discussed in detail. Following a comparison of the reduction technologies, the terminal control method was indicated as the key technology to achieve good control of dioxins during the sintering process. For the technical characteristics of the sintering process and flue gas, multiple methods should be collectively considered, and the most suitable method may be addition of inhibitors + ultra-clean dust collection (electrostatic precipitation/bag filter) + desulphurization + selective catalytic reduction to sufficiently remove multiple pollutants, which provides a direction for the cooperative disposal of flue gas pollutants in future. The emission of dioxins from the iron ore sintering process is the largest emission source of dioxins, and the reduction in dioxin emission from the iron ore sintering process to the environment is increasingly important. Three approaches to control the emission of dioxins were reviewed: source control, process control, and terminal control. Among them, two terminal control technologies, activated carbon adsorption and selective reduction technology, were discussed in detail. Following a comparison of the reduction technologies, the terminal control method was indicated as the key technology to achieve good control of dioxins during the sintering process. For the technical characteristics of the sintering process and flue gas, multiple methods should be collectively considered, and the most suitable method may be addition of inhibitors + ultra-clean dust collection (electrostatic precipitation/bag filter) + desulphurization + selective catalytic reduction to sufficiently remove multiple pollutants, which provides a direction for the cooperative disposal of flue gas pollutants in future.
出处 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2018年第4期357-365,共9页 钢铁研究学报(英文版)
基金 The authors acknowledge financial support from the Key Project of National Natural Science Foundation of China(U1660206) and General Program of National Natural Science Foundation of China (51674002).
关键词 Iron ore sintering process DIOXINS Removal technology Activated carbon adsorption Selective catalyticreduction Iron ore sintering process Dioxins Removal technology Activated carbon adsorption Selective catalyticreduction
  • 相关文献

同被引文献14

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部