期刊文献+

差分迁移和趋优变异的生物地理学优化算法 被引量:10

Biogeography-based Optimization with Differential Migration and Global-best Mutation
下载PDF
导出
摘要 为增强生物地理学优化(Biogeography-based optimization,BBO)算法的优化性能,降低其运行时间,提出了一种差分迁移和趋优变异的生物地理学优化算法(DGBBO).首先,将两种差分扰动操作与BBO算法的迁移操作有机融合,形成差分迁移算子,提升全局搜索能力并平衡探索和开采;其次,将趋优操作融入到BBO算法的变异算子中,替换原变异操作,形成趋优变异算子,克服了原变异算子存在的缺陷,加快收敛速度;此外,还从多个角度降低算法的计算复杂度.在一组常用的基准函数上进行了仿真实验,实验结果表明,相较于其它state-of-the-art算法,DGBBO算法寻优能力显著,稳定性强,收敛速度快,运行时间少,验证了其优秀的优化性能. In order to enhance the optimization performance and reduce the runtime of the biogeography-based optimization( BBO) algorithm,an improved biogeography-based optimization algorithm with differential migration and global-best mutation( DGBBO) is presented. Firstly,the two differential disturbance operations are blended with BBO's migration operation to generate the differential migration operator. The differential migration operator can improve the global searching ability and balance the exploration and exploitation.Secondly,the global-best operation is merged into BBO's mutation operator instead of the original mutation operation to generate the global-best mutation operator. The global-best operator can overcome the defects of the original mutation operator and accelerate convergence speed. In addition,the computation complexity of the algorithm is reduced from several aspects. A large number of simulation experiments are made on a set of common benchmark functions. The experiment results show that,compared with the other state-of-the-art algorithms,DGBBO performs more significant optimization ability,stronger stability,faster convergence speed and less runtime. So DGBBO's excellent optimization performance is verified.
作者 张新明 康强 王霞 程金凤 ZHANG Xin-ming;KANG Qiang;WANG Xia;CHENG Jin-feng(College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China;Engineering Technology Research Center for Computing Intelligence & Data Mining,Xinxiang 453007, China)
出处 《小型微型计算机系统》 CSCD 北大核心 2018年第6期1168-1177,共10页 Journal of Chinese Computer Systems
基金 河南省重点科技攻关项目(132102110209)资助 河南省基础与前沿技术研究计划项目(142300410295)资助
关键词 进化算法 生物地理学优化算法 差分迁移算子 趋优变异算子 优化问题 evolutionary algorithm biogeography-based optimization differential migration operator global-best mutation operator optimization problem
  • 相关文献

参考文献3

二级参考文献27

  • 1CHEN X W, KAR S, RALESCU D A. Cross-entropy measure of uncertain variables[J]. Information Sciences, 2012, 201:53-60.
  • 2HORNG M H, LIOU R J. Multilevel minimum cross entropy threshold selection based on the firefly algorithm [J]. Expert Systems with Application, 2011, 38(12):14805-14811.
  • 3BHANDARI A K, SINGH V K, KUMAR A, et al.. Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy [J]. Expert Systems with Application, 2014, 41(7): 3538-3560.
  • 4SIMON D. Biogeography-based optimization [J]. IEEE Transaction on Evolutionary Computation, 2008,12(6):702-713.
  • 5YANG G Q, LIU Y K, YANG K. Multi-objective biogeography-based optimization for supply chain network design under uncertainty[J]. Computers and Industrial Engineering, 2015, 85:145-156.
  • 6TAMJIDY M, PASLAR S, BAHARUDIN B T, et al.. Biogeography based optimization (BBO) algorithm to minimize non-productive time during hole-making process[J]. International Journal of Production Research, 2015, 53(6): 1880-1894.
  • 7KIM S S, BYEON J H, YU H, et al.. Biogeography-based optimization for optimal job scheduling in cloud computing [J]. Applied Mathematics and Computation, 2014, 247:266-280.
  • 8NIU Q, ZHANG L T, LI K.A biogeography-based optimization algorithm with mutation strategies for model parameter estimation of solar and fuel cells[J]. Energy Conversion and Management, 2014, 86: 1173-1185.
  • 9GUO W A, WANG L, WU Q D. An analysis of the migration rates for biogeography-based optimization[J]. Information Sciences, 2014, 254:111-140.
  • 10MA H P, SIMON D, FEI M R, et al.. Variations of biogeography-based optimization and Markov analysis [J]. Information Sciences, 2013, 220:492-506.

共引文献31

同被引文献71

引证文献10

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部