摘要
为了通过提高供应链柔性网络来提高企业运营效率,考虑供应端(节点中断)和需求端(需求量波动)的不确定性,运用含多隐层的机器学习模型——深度信念网络,构建了以中转点选择和流量分布优化为目标的供应链柔性网络模型,制定了网络训练步骤,并以某大型制造企业为例,在供应链柔性网络预处理的基础上,对比分析了BP神经网络与深度信念网络的流量预测精度。实例分析结果表明,深度信念网络克服了BP神经网络容易陷入局部最优的缺陷,比传统的BP神经网络预测精度更高、训练时间更短、学习能力更强,最大程度地缩短了供应链网络应对不确定风险的响应时间,提高了供应链网络柔性。
To improve supply chain flexibility network for raising the operational efficiency of enterprises,by considering the uncertainty of supply side(node interrupt)and demand side(demand fluctuation)simultaneously,and using the deep belief network that was machine learning model with multiple hidden layers,the model of supply chain flexible network was constructed.Different from the traditional BP neural network,the deep belief network overcame the defects of BP neural network in dealing with the nonlinear relation of complex function.Based on the actual data of a certain manufacturing industry,the contrast analysis showed that the deep belief network was more accurate than the traditional BP neural network.The training time of deep belief network was shorter,and the learning ability was stronger.It could shorten the response time of supply chain network to deal with uncertain risks,which improved the flexibility of the supply chain network.
作者
孔繁辉
李健
Kongfanhui;LI Jian(Research Center of Circular Economy and Enterprises Sustainable Development, Tianjin University of Technology, Tianjin 300384, China;College of Management and Economics, Tianjin University, Tianjin 300072, China)
出处
《计算机集成制造系统》
EI
CSCD
北大核心
2018年第5期1292-1300,共9页
Computer Integrated Manufacturing Systems
基金
教育部哲学社会科学研究重大课题攻关资助项目(15JZD021)~~
关键词
供应链柔性
深度信念网络
BP神经网络
提升研究
supply chain flexibility
deep belief network
BP neural network
enhance research