期刊文献+

基于多模型迭代的车辆状态融合估计方法 被引量:6

Vehicle State Fusion Estimation Method Based on Multi-model Iteration
下载PDF
导出
摘要 为了提高车辆行驶状态估计的可靠性,提出一种基于多模型观测器误差补偿与迭代的车辆状态融合估计方法。基于三自由度车辆动力学模型设计了车辆状态强跟踪滤波估计算法;同时,根据四轮轮速耦合关系,考虑到数据扰动和病态矩阵的影响,设计了车辆状态的岭估计算法。为进一步提高估计系统的可靠性,提出了动力学模型观测器与运动学模型观测器补偿与迭代的估计方式,设计了模糊控制器,根据实时的质心侧偏角和滑移率的伪量测值,判断强跟踪滤波器和岭估计器估计结果所占权重,利用闭环估计系统的迭代与融合提高估计性能。仿真和道路实验结果表明,所提出的车辆状态融合估计方法能够兼顾强跟踪滤波算法与岭估计算法的优势,根据车辆纵向滑移和质心侧偏角动态调节强跟踪估计与岭估计结果的权重系数,从而在保证估计精度的同时提高了估计系统的多工况适应能力。 In order to improve the reliability of vehicle running state estimation, a vehicle state fusion estimation method based on multi-model observer error compensation and iteration was proposed. A strong tracking filter estimation algorithm was presented for vehicle state estimation based on three-degree-of- freedom vehicle dynamics model, meanwhile, using the coupling relationship of four wheel speed, a ridge estimation algorithm for vehicle state estimation was designed considering the influence of data disturbance and ill-conditioned matrix. To further improve the reliability of estimation system, an estimation strategy with the error compensation and iteration between the dynamic-model-based observer and the kinematicmodel-based observer was developed, a fuzzy controller was designed which was used to judge the weight of strong tracking filter and ridge estimator according to the real-time pseudo measurement value of sideslip angle and longitudinal slip rate, and then estimation performance was improved by iteration and fusion of the closed-loop estimation system. The results of the simulation and road test showed that the proposed vehicle state fusion estimation method can integrate the advantages of strong tracking filter algorithm and ridge estimation algorithm, dynamically adjust the weight coefficients of strong tracking filter and ridge estimation results according to the vehicle longitudinal slip ratio and sideslip angle, guarantee the estimation accuracy and synchronously improve the adaptability of the estimation system under multiple conditions.
作者 陈特 陈龙 蔡英凤 徐兴 江浩斌 CHEN Te;CHEN Long;CAI Yingfeng;XU Xing;JIANG Haobin(School of Automotive and Truffle Engineering, Jiangsu University, Zhenjiang 212013 China;Automotive Engineering Research Institute, Jiangsu University, Zhenjiang 212013, China)
出处 《农业机械学报》 EI CAS CSCD 北大核心 2018年第6期385-392,共8页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家自然科学基金重点项目(U1564201 U1664258) 江苏省"六大人才高峰"项目(2014-JXQC-004) 江苏省"333"工程项目(BRA2016445) 江苏省重点研发计划项目(产业前瞻与共性关键技术)(BE2016149) 江苏省高校自然科学基金项目(16KJB580012)
关键词 车辆 状态估计 质心侧偏角 误差补偿 岭估计 vehicle state estimation sideslip angle error compensation ridge estimation
  • 相关文献

参考文献3

二级参考文献25

  • 1M ' sirdi N, Rabhi A, Zbiri N, et al. Vehicle-road interaction modeling for estimation of contact force [ J ]. Vehicle System Dynamics, 2005, 43(1) : 403 -411.
  • 2Satria M, Best M C. Comparison between Kalman filter and robust filter for vehicle handling dynamics state estimation [ C ]. SAE Paper 2002 - 01 - 1185, 2002.
  • 3Ray L R. Nonlinear tire force estimation and road friction identification: simulation and experiment[ J]. Automatica, 1997, 33(10): 1 819-1833.
  • 4Wilkin M A, Crolla D C, Levesley M C, et al. Designed verification of an extended Kalman filter to estimation vehicle tyre force[ C ]. SAE Paper 2006 - 01 - 1285, 2006.
  • 5Wenzel T A, Burnham K J, Blundell M V. Dual extended Kalman filter for vehicle state and parameter estimation [ J ]. Vehicle System Dynamics, 2006, 44(2) : 153 -171.
  • 6Baffet G, Charara A. An observer of tire-road forces and friction for active security vehicle system [ J ]. IEEE/ASME Transactions on Mechatronics, 2007, 12 ( 6 ) : 651 - 661.
  • 7Bolzern P, Cheli F, Falciola G, et al. Estimation of the non-linear suspension tyre eorning forces from experimental road test data[ J ]. Vehicle System Dynamics, 1999, 31 ( 1 ) : 23 - 34.
  • 8Kim J. Identification of lateral tyre force dynamics using an extended Kalman fiher from experimental road test data [ J ]. Control Engineering Practice, 2009, 17 (3) : 357 - 367.
  • 9Best M C. Identifying tyre models directly from vehicle test data using an extended Kalman filter [ J]. Vehicle System Dynamics, 2009, 48(2) : 171 - 187.
  • 10Meinhold R, Singpurwalla N. Robustification of Kalman filter models [ J ]. Journal of the American Statistical Association, 1989, 84(406) : 479 -486.

共引文献49

同被引文献39

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部