期刊文献+

一类具比例时滞递归神经网络的无源性 被引量:3

Passivity of a class of recurrent neural networks with proportional delays
下载PDF
导出
摘要 研究一类具比例时滞递归神经网络的无源性。通过非线性变换,将具比例时滞的模型等价变换成常时滞模型;通过构造合适的Lyapunov泛函和线性矩阵不等式,充分利用神经元激活函数的条件,得到两个新的保证具比例时滞递归神经网络无源性的条件。数值算例及其仿真结果验证了结论的正确性。 Passivity of a class of recurrent neural networks with proportional delays is investigated. By applying a nonlinear transformation, the primary model with proportional delays is transformed equivalent- ly into a model with constant delays. By constructing proper Lyapunov functional and linear matrix ine- quality ( LMI), and fully using the conditions of neuron activation functions, two new passivity conditions are proposed to ensure the passivity of recurrent neural networks with proportional delays. Two numerical examples and their simulation results are given to testify the effectiveness of the proposed criteria.
作者 王廷 周立群 WANG Ting;ZHOU Liqun(School of Mathematic Science, Tianjin Normal University, Tianjin 300387)
出处 《黑龙江大学自然科学学报》 CAS 2018年第2期157-163,共7页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(61374009) 天津市中青年骨干创新人才培养计划项目(043-135205GC38)
关键词 递归神经网络 比例时滞 无源性 LYAPUNOV泛函 线性矩阵不等式 recurrent neural networks proportional delays passivity Lyapunov functional linear matrixinequality
  • 相关文献

参考文献6

二级参考文献46

共引文献28

同被引文献29

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部