期刊文献+

救援指挥调度数据库错误数据自动识别研究 被引量:7

Research on automatic recognition of error data in rescue command and dispatching database
原文传递
导出
摘要 为提高救援指挥调度数据库的故障诊断分析能力,需要进行数据库中错误数据自动识别,提出基于模糊特征匹配聚类分析的救援指挥调度数据库错误数据自动识别方法,对救援指挥调度数据库的存储结构进行高维重组,提取数据库中的错误数据聚类属性特征量,采用匹配滤波器进行救援指挥调度数据库错误数据滤波,去除多个已知干扰频率成分。通过模糊特征匹配聚类分析分析方法进行救援指挥调度数据库错误数据自动聚类和识别,提高数据自动识别能力,实现错误数据的自动聚类。仿真结果表明,采用该方法进行救援指挥调度数据库错误数据自动识别的准确性较高,数据聚类性较好,提高了数据库的诊断分析能力。 In order to improve the ability of fault diagnosis and analysis of the rescue command and dispatch data- base, it is necessary to automatically identify the error data in the database. Based on fuzzy feature matching clustering analysis, a method of automatic recognition of error data in rescue command and dispatch database is proposed. The storage structure of rescue command and dispatch database is reorganized in high dimension, and the attribute charac- teristic quantity of clustering error data in the database is extracted. A matching filter is used to filter the error data of the rescue command and dispatch database, and several known interference frequency components are removed, and the error data of the rescue command and dispatching database are automatically clustered and identified by using the fuzzy feature matching clustering analysis method. The simulation results show that the method has high accuracy and good clustering ability in the rescue command and dispatch database. The ability of diagnosis and analysis of database is improved.
作者 王贵喜 WANG Guixi(92493 troops 13 teams in Huludao ,Liaoning ,125001)
机构地区 [
出处 《自动化与仪器仪表》 2018年第6期53-55,58,共4页 Automation & Instrumentation
关键词 救援指挥调度 数据库 错误数据自动识别 聚类 模糊特征 rescue command and scheduling database error data automatic identification clustering fuzzy features
  • 相关文献

参考文献6

二级参考文献35

  • 1张鹏.Arbor Pravail APS:专注抵御应用层DDoS攻击[J].通信世界,2011(37):41-41. 被引量:1
  • 2王秀芳,王岩.优化K均值随机初始中点的改进算法[J].化工自动化及仪表,2012,39(10):1302-1304. 被引量:4
  • 3谢逸,余顺争.基于Web用户浏览行为的统计异常检测[J].软件学报,2007,18(4):967-977. 被引量:42
  • 4HOSSEINI M, PHALPK, TAYLOR J, et al. The four pillars of crowdsourcing: A reference model[C]. 2014 IEEE Eighth International Conference on Research Challenges in Information Science (RCIS), Marrakech, 2014: 1-12.
  • 5SHEN H, LI Z, LIU J, et al.. Knowledge sharing in the online social network of Yahoo! answers and its implications [J]. IEEE Transactions on Computers, 2014, 64(6): 1715-1728.
  • 6WU H, CORNEY J, and GRANT M. Relationship between quality and payment in crowdsourced design[C]. Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD), Hsinchu, 2014: 499-504.
  • 7DOAN A, RAMAKRISHNAN R, and HALEVY A, Crowdsourcing systems on the World-Wide Web[J]. Communications of the ACM, 2011, 54(4): 86-96.
  • 8MALANDRINO F, CASETTI C, and CHIASSERINI C. Content discovery and caching in mobile networks with infrastructure[J]. IEEE Transactions on Computers, 2012, 61(10): 1507-1520.
  • 9YANG D, XUE G, FANG X, et al. Crowdsourcing to smartphones: Incentive mechanism design for mobile phone sensing[C]. Proceedings of the 18th Annual International Conference on Mobile Computing and Networking (MOBICOM 2012), New York, 2012: 173-184.
  • 10ZHANG Y and SCHAAR M. Reputation-based incentive protocols in crowdsourcing applications[C]. IEEE INFOCOM, Orlando, FL, 2012: 2140-2148.

共引文献150

同被引文献62

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部