期刊文献+

机载合成孔径雷达海岸带图像匹配优化仿真 被引量:3

Optimization Simulation of Airborne SAR Coastal Image Matching
下载PDF
导出
摘要 机载合成孔径雷达(Synthetic Aperture Radar,SAR)海岸带图像匹配技术是海冰监控、石油泄漏检测和海运监控等应用的核心步骤。通过对匹配技术进行优化能提高匹配精度,也能直接提升上述应用的效果。由于机载SAR海岸带图像中广泛存在乘性噪声的干扰,导致传统匹配算法无法提取准确反映地貌信息的特征,出现匹配结果误差大、精度低的问题。针对这一难点,对传统的SAR图像匹配算法进行了优化,使用SIFT提取特征点的位置和方向信息,将特征点周围的图像信息输入卷积神经网络,提取更为全局的特征以消除乘性噪声的影响,用度量学习模块得到更具有区分性的相似性度量做特征点对应,最后使用RANSAC算法实现配准。仿真结果显示,经过优化的算法可以显著地提高匹配精度,可直接用于后续SAR图像应用中。 Airborne Synthetic Aperture Radar(SAR) coastal image matching technology has important applica- tions in the fields of sea ice monitoring, oil leak detection and sea transportation monitoring. The matching accuracy can be improved by optimizing the existing matching technology, which can directly enhance the effect of these applications. However, there are a lot of multiplicative noises in SAR images, so the effect of traditional image matching algorithm based on gradient feature is often poor. Aiming at this problem, a new SAR image registration method based on convolutional neural network (CNN) is proposed. The SIFT algorithm was used to extract the position and orientation information of feature points, and the patches around the feature points were input to the convolution neural network. The RANSAC algorithm was used in the final step of image registration. The simulation results show that our new algorithm gives better results than the traditional algorithms. Our method is important to SAR image processing, and moreover it can directly enhance the effect of follow -up applications.
作者 刘雄飞 侯奇 谷源涛 杨健 LIU Xiong - fei;HOU Qi;GU Yuan - tao;YANG Jian(Department of Electronic Engineering, Tsinghua University, Beijing 100084, China)
出处 《计算机仿真》 北大核心 2018年第6期9-12,22,共5页 Computer Simulation
关键词 合成孔径雷达 海岸带图像 配准 Synthetic aperture radar(SAR) Coastal zone image Registration
  • 相关文献

参考文献2

二级参考文献14

  • 1邓汉华,杨靓,黄士坦.基于归一化互相关系数的图像匹配的连续消算法[J].微电子学与计算机,2006,23(12):227-230. 被引量:7
  • 2高峰,文贡坚,吕金建.一种准自动高精度图像配准算法[J].现代电子技术,2007,30(6):56-59. 被引量:3
  • 3L Brown.A Survey of Image Regist ration Techniques[J].ACM Computer Surveys,1992,24(4):325-376.
  • 4C Harris and M Stephens.A combined corner and edge detector[C].in Proc.4th Alvey Vision Conf.,Manchester,U.K.,1988.147-151.
  • 5Y Bentoutou,Nasreddine Taleb,Kidiyo Kpalma and Joseph Ronsin.An Automatic Image Registration for Applications in Remote Sensing[J].IEEE transactions on geoscience and remote sensing,2005,43(9):2127-2137.
  • 6C Schmid,R Mohr and C Bauckhage.Evaluation of interest point detectors[J].Comput,2000,37(2):151-172.
  • 7Lisa Gottesfeld Brown.A Survey of Image Registration Technique[J].ACM Computing Surveys January 12,1992,24 (4):325 -378.
  • 8B Srinivasa Reddy and B N Chatterji.An FFT-Based Technique for Translation,Rotation,and Scal-Invariant Image Registration[J].IEEE Transaction on Image Processing,August 1996,5 (8).
  • 9A L Thornton,S J Sangwine.log-polar sampling incorporating a novel spatially variant filter to improve object recognition[C].IPA97,Conferencepublication,July 1997,(443):15-17.
  • 10Ching-Yung Lin,Min Wu,Jeffrey A Bloom,Ingemar J Cox,Matt L Miller and Yui Man Lui.Rotation,Scale,and Translation Resilient Watermarking for Images[J].IEEE TRANSACTIONS ON IMAGE PROCESSING,MAY 2001,10(5).

共引文献4

同被引文献29

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部