期刊文献+

基于主磁场不均匀的分数域磁共振成像方法

Fractional magnetic resonance imaging based on inhomogeneous main magnetic field
下载PDF
导出
摘要 现有核磁共振设备面对主磁场不均匀多是采取贴磁片等补偿磁场不均匀等硬件方法,但这给成像带来图像伪影,图像模糊等不良影响。针对磁共振成像中磁场不均匀的问题,提出了一种主磁场不均匀下的分数域磁共振成像方法。首先选择待成像活体组织的某一层,在该层上选择若干个点,测量该层面上的磁场强度大小,在磁共振成像原理的基础上,建立成像区域磁场强度分布模型,然后建立磁场的多项式模型,按照测量的磁场中是否存在明显的二阶分量可以将该多项式模型分为二阶多项式模型和高阶多项式模型;之后,将这两个模型分别代入磁共振的自由感应衰减(FID)信号中,对于二阶模型可以用分数阶傅里叶变换工具进行求解成像物体某一层上的自旋密度函数,对于高阶模型需要通过求解代数方程的方法得到成像物体某一层面上的自旋密度函数,这样便建立了主磁场任意不均匀下的磁共振信号模型。实验结果表明,该方法达到与均匀主磁场下近似同样的效果。 The existing NMR equipment is uneven to face the main magnetic field, mostly adopts the hardware method of magnetic field compensation, such as magnetic field compensation, but it brings bad effects such as image artifact and blurred image. In view of the problem of magnetic field inhomogeneous in magnetic resonance imaging, a fractional domain magnetic resonance imaging(f MRI) method under the main magnetic field inhomogeneous is proposed. First, select a layer of living tissue to be imaged, select several points on the layer and measure the intensity of the magnetic field on the layer. Based on the principle of magnetic resonance imaging, establish the model of the magnetic field intensity distribution in the imaging area, and then establish. The polynomial model of the magnetic field can be divided into the second-order polynomial model and the higher-order polynomial model according to whether there is a significant second-order component in the measured magnetic field. Then, the two models are respectively substituted into the free-induction decay(FID) signals of the magnetic resonance. For the second-order model, the fractional Fourier transform tool can be used to solve the spin density function on one layer of the imaged object. The order model needs to obtain the spin density function at a certain level of the imaging object by solving the algebraic equation, thus establishing the MR signal model with any non-uniform main magnetic field. Experimental results show that this method achieves the same effect as the uniform main magnetic field.
作者 张彦山 庞栋栋 马鹏阁 王忠勇 邸金红 Zhang Yanshan;Pang Dongdong;Ma Pengge;Wang Zhongyong;Di Jinhong(Zhengzhou University of Aeronautics, Zhengzhou, Henan 450015, China;School of Information Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China)
出处 《光电工程》 CAS CSCD 北大核心 2018年第6期113-119,共7页 Opto-Electronic Engineering
基金 河南省高校科技创新团队支持计划(17IRTSTHN014) 河南省科技攻关计划项目(172102210080)~~
关键词 磁共振成像 多项式模型 自选密度函数 分数阶傅里叶变换 magnetic resonance imaging polynomial model spin density function fractional Fourier transform
  • 相关文献

参考文献6

二级参考文献67

  • 1刘树田,徐建东,张岩,李淳飞.透镜组合实现光学分数傅里叶变换[J].光学学报,1995,15(10):1404-1408. 被引量:6
  • 2俞根苗,邓海涛,张长耀,吴顺君.弹载侧视SAR成像及几何校正研究[J].系统工程与电子技术,2006,28(7):997-1001. 被引量:11
  • 3P. Oonincx, B. Muth, A fractional Fourier based correlator for detecting joint time and frequency offsets [ C J. Digital Signal Processing, 2007 15th International conference on July, 1-4, 2007, 623-626.
  • 4G. K. Aggey. G. T. Ran, Application of the FRFT to distoration analysis in transmultiplexers Communications [ C]. 2008 24th Biennial Symposium, June 24-26 2008, 68-71.
  • 5C. Pujara, P. Mehta, U. B. Desai, Chirp based nmltiple access technique using fractional fourier transform [ C ]. Information communications & signal Processing, 2007 6th international Conference, Dec. , 2007, 1-5.
  • 6H. M. Ozaktas, O. Arlkan, M. A. Kutay, G. Bozdagi, Digital computation of tile fractional Fourier transform [J]. IEEE Trans. on SP. Vol. (44), Sept., 1996,2141-2150.
  • 7O. Arlkan, M. A. Kutay, H. M. Ozaktas, O. K. Akdemir, Discrete fractional Fourier transformation [ C ]. IEEE SP Sym. ,Time-Freq. Anal. , vol. 4, 1996, 205-207.
  • 8Soo-Chang Pei, Min-Hung Yeh, Chien-Cheng, Discrete fractional Fourier transform based on orthogonal projections [J]. IEEE Trans. SP. Vol. 47, May, 1999, 1335- 1348.
  • 9Soo-Chang Pei, Wen_Liang Hsue, Tridiagonal commuting matrices and fractionalizations of DCT and DST matrices of types I, IV, V and VIII [J]. IEEE Trans. , SP. Vol. 56, June 2008, 2357-2369.
  • 10Pei. S. C, Hsue. W. L. Discrete fractional Fourier transform based on new nearly tridiagonal commuting matrices [ J ]. IEEE Trans. , SP. Vol. 54, Oct, 2006, 3815-3825.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部