期刊文献+

一维NiFe_2O_4纳米丝的制备与磁性能

Preparation and Magnetic Properties of One-dimensional NiFe_2O_4 Nanowires
下载PDF
导出
摘要 采用静电纺丝法制备了表面光滑、直径均匀、连续的一维NiFe_2O_4纳米丝。利用傅立叶变换红外光谱仪(FTIR)、X射线电子衍射(XRD)、扫描电子显微镜(SEM)和振动样品磁强计(VSM)对Ni Fe2O4纳米丝的结构、形貌和磁性能进行表征。结果表明,经500~900℃煅烧后均得到直径约为60 nm的纯相尖晶石型NiFe_2O_4纳米丝,且NiFe_2O_4纳米丝具有良好的软磁特性,其饱和磁化强度(Ms)和剩余磁化强度(Mr)随煅烧温度的升高而增大,900℃煅烧后Ms和Mr分别达到最大值35.56、13.29 A·m2/kg。经600℃焙烧后的Ni Fe2O4纳米丝Ms为30.56 A·m2/kg,矫顽力(Hc)达到最大值2.76 A/m,表明NiFe_2O_4的单畴临界尺寸约为28 nm。 The continuous one-dimensional NiFe2O4 nanowires with smooth surface and uniform diameter were made by electrospinning method. The structure, morphology and magnetic properties of NiFe2O4 nanowires were assessed via FTIR, nanowires with diameter sizes of 60 nm and XRD, SEM and VSM. The results showed that NiFe2O4 a well-developed spinel structure were successfully obtained after calcining at 500 - 900℃ , which had a good quality of soft magnetic properties and M and Mr increased with the rise of calcination temperature. Ms and Mr reached the maximum value of 35.56 A·m^2/kg and 13.29 A · m^2/kg after being calcined at 900 ℃. Nanowires with M of 30.56 A·m^2/kg and Ho reached a maximum value of 2.76 A/m at 600 ℃, which indicats that the critical single-domain size of NiFe2O4 was about 28 nm.
作者 戴剑锋 刘鹏 王青 李维学 DAI Jianfeng;LIU Peng;WANG Qing;LI Weixue(State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China;School of Science, Lanzhou University of Technology, Lanzhou 730050, China)
出处 《有色金属工程》 CAS CSCD 北大核心 2018年第3期12-15,28,共5页 Nonferrous Metals Engineering
基金 国家自然科学基金资助项目(11664023)
关键词 NIFE2O4 纳米丝 静电纺丝法 单畴尺寸 磁性能 NiFe2O4 nanowires electrospinning single-domain size magnetic properties
  • 相关文献

参考文献2

二级参考文献39

  • 1Yang, X. F.; Li, Q. L.; Zhao, J. X.; Li, B. D.; Wang, Y. F. J. Alloy. Compd. 2009, 475, 312.
  • 2Arkom, K.; Ali, G.; Liu, X. X.; Akimitsu, M. Thin Solid Films 2010, 518, 7059.
  • 3Wang, Y. F.; Li, Q. L.; Zhang, C. R.; Li, B. D. J. Magn. Magn. Mater. 20119, 321, 3368.
  • 4Mohammed, A. A.; Krishnan, V.; Bo, T. Nanoscale Res. Lett. 2011, 6, 375.
  • 5Xia, Q.; Wang, H. C.; Miao, Z. Y.; Wang, X. S.; Fang, Y. X.; Chen, Q.; Shao, X. G. Talanta 2011, 84, 673.
  • 6Li, C. J.; Wang, J. N. Mater. Lett. 2010, 64, 586.
  • 7Shen, X. Q.; Liu, M. Q.; Song, F. Z.; Meng, X. F. J. Sol-Gel. Sci. Technol. 2010, 53, 448.
  • 8Fang, Z. B.; Yan, Z. J.; Tan, Y. S.; Liu, X. Q.; Wang, Y. Y. Appl. Surf. Sci. 2005, 241,303.
  • 9Morel, A.; Le Breton, J. M.; Kreisel, J.; Wiesinger, G.; Kools, F.; Tenaud, P. ,I. Magn. Magn. Mater. 20112, 242-245, 1405.
  • 10Lechevallier, L.; Le Breton, J. M.; Wang, J. F.; Harris, I. R. J.. Phys. -Condens. Mat. 2004, 16, 5359.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部