摘要
In this paper, we report the experimental characterization of highly nonlinear GeSbS chalcogenide glass waveguides. We used a single-beam characterization protocol that accounts for the magnitude and sign of the real and imaginary parts of the third-order nonlinear susceptibility of integrated Ge23Sb7S70 (GeSbS) chalcogenide glass waveguides in the near-infrared wavdength range at λ = 1580 nm. We measured a waveguide nonlinear parameter of 7.0 4- 0.7 W-1 · m-1, which corresponds to a nonlinear refractive index of n2 =(0.93 ± 0.08) ×10-18 m2/W, comparable to that of silicon, but with an 80 times lower two-photon absorption coefficient βTPA = (0.010± 0.003) cm/GW, accompanied with linear propagation losses as low as 0.5 dB/cm. The outstanding linear and nonlinear properties of GeSbS, with a measured nonlinear figure of merit FOM TPA = 6.0 ± 1.4 at λ = 1580 nm, ultimately make it one of the most promising integrated platforms for the realization of nonlinear functionalities.
In this paper, we report the experimental characterization of highly nonlinear Ge Sb S chalcogenide glass waveguides.We used a single-beam characterization protocol that accounts for the magnitude and sign of the real and imaginary parts of the third-order nonlinear susceptibility of integrated Ge23 Sb7 S70(GeSbS) chalcogenide glass waveguides in the near-infrared wavelength range at λ =1580 nm. We measured a waveguide nonlinear parameter of 7.0±0.7 W^(-1)· m(-1), which corresponds to a nonlinear refractive index of n_2=0.93±0.08 × 10^(-18) m^2∕W,comparable to that of silicon, but with an 80 times lower two-photon absorption coefficient βTPA=0.010± 0.003 cm∕GW, accompanied with linear propagation losses as low as 0.5 dB/cm. The outstanding linear and nonlinear properties of Ge Sb S, with a measured nonlinear figure of merit FOMTPA=6.0 ±1.4 at λ =1580 nm, ultimately make it one of the most promising integrated platforms for the realization of nonlinear functionalities.
基金
H2020 European Research Council(ERC)(647342)
U.S. National Science Foundation(NSF)(1506605)
French RENATECH Network