摘要
在Henstock积分的基础上,把在[a,b]上所有Henstock可积函数组成的空间称为Denjoy空间(简记为DH[a,b]空间),建立Denjoy积分有关的基本概念,给出DH[a,b]空间上的连续线性泛函的一种刻划,并在非绝对型Henstock积分与Riemann-Stieltjes积分之关系定理的基础上,对该连续线性泛函刻划给出一个简捷的证明.
On the basis of Henstock integration,put all the integrable functions that make up the space on the [a,b]called Denjoy space( abbreviated as DH [a,b]space),to establish the basic concepts related to Denjoy integration,to give a score of continuous linear functional on the DH[a,b] space. And in the absolute type of Henstock integral and Riemann-Stieltjes integral relationship on the basis of the theorem,to give a simple proof of this continuous linear functional score.
作者
李伟
LI Wei(School of Sciences, Jimei University, Xiamen 361021, China)
出处
《湖北民族学院学报(自然科学版)》
CAS
2017年第1期53-55,共3页
Journal of Hubei Minzu University(Natural Science Edition)
基金
福建省自然科学基金项目(2016J01667)