期刊文献+

离群点挖掘技术在成品油管道泄漏监测中的应用 被引量:2

Application of Outlier Mining Technology in Leak Detection of Oil Product Pipeline
下载PDF
导出
摘要 在介绍了聚类和离群点挖掘概念的基础上,利用管道运行中采集的大量数据建立基于聚类的离群点挖掘模型,实现了对管道泄漏的快速检测、预警,避免了以往泄漏误报及反复报多、效率低、依靠人工核实,主观性强的弊端,提高了检测精度和效率,为成品油管道安全运行提供了保障。 On the basis of introducing the concept of clustering and outlier mining,a cluster based outlier mining model is set up to make full use of a large amount of data collected in the pipeline operation to realize the rapid warning of pipeline leakage. This method can avoid the shortcomings of previous leakage detection methods,such as much misinformation,low efficiency,manual verification and strong subjectivity,and improve the detection accuracy and efficiency,which can provide a guarantee for the safe operation of the oil product pipeline.
出处 《石油库与加油站》 2018年第3期7-10,共4页 Oil Depot And Gas Station
关键词 成品油 输油管道 泄漏 监测 离群点挖掘技术 应用 oil product oil pipeline leakage monitoring outlier mining technology application
  • 相关文献

参考文献1

二级参考文献8

  • 1Han JW, Kamber M. Data Mining: Concepts and Techniques. 2nd ed., San Francisco: Morgan Kaufmann Publishers, 2001. 223-250.
  • 2Ester M, Kriegel HP, Sander J, Xu XW. A density-based algorithm for discovering clusters in large spatial database with noise. In: Simoudis E, Han J, Fayyad UM, eds. Proc. of the 2nd Int'l Conf. on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996. 226-231.
  • 3Zhang T, Ramakrishnan R, Linvy M. BIRCH: An efficient data clustering method for very large databases. In: Jagadish HV, Mumick IS, eds. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. Montreal: ACM Press, 1996. 103-114.
  • 4Guha S, RastogiR, Shim K. CURE: An efficient clustering algorithm for large databases. In: Haas LM, Tiwary A, eds. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. New York: ACM Press, 1998. 73-84.
  • 5Ankerst M, Breuning M, Kriegel HP, Sander J. OPTICS: Ordering points to identify the clustering structure. In: Delis A, Faloutsos C, Ghandeharizadeh S, eds. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. Philadelphia: ACM Press, 1999. 49-60.
  • 6Karypis G, Han EH, Kumar V. CHAMELEON: A hierarchical clustering algorithm using dynamic modeling. Computer, 1999,32(8): 68-75.
  • 7Hand DJ, Vinciotti V. Choosing k for two-class nearest neighbour classifiers with unbalanced classes. Pattern Recognition Letters, 2003,24(9): 1555-1562.
  • 8Stonebraker M, Frew J, Gardels K, Meredith J. The SEQUOIA 2000 storage benchmark. In: Buneman P, ed. Proc. of the ACM SIGMOD Int'l Conf. on Management of Data. Washington: ACM Press, 1993.2-11.

共引文献113

同被引文献16

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部