期刊文献+

马田系统的区间Choquet模糊积分的评价方法在制造业质量管理方面的应用

Evaluation Method for interval Choquet Fuzzy Integral of Martian System and its Application to Manufacturing Quality Management
下载PDF
导出
摘要 通过将区间样本的统计量引入马田系统的计算中,拓宽了马田系统在模糊积分领域中的应用,将传统的马田系统与区间样本数据进行结合形成新型的区间型马田系统,并以此为基础应用一种区间型的模糊数据的计算方法,便于对区间属性值的集成,对区间Choquet的模糊积分算子进行定义。并且通过对制造企业的质量管理方面实际的案例证明该方法对于区间数据的模糊积分的多属性的决策问题的解决具有非常有效的作用,同时演奏了该方法的实用性和可行性。 The statistics of interval samples are introduced into the calculation of Martian system, which widens the application of Martian system to the field of fuzzy integral. Therefore, this paper combines the traditional mulberry field system with the interval sample data to form a new interval type mulberry field system, and on this basis, applies an interval fuzzy data calculation method to facilitate the integration of the interval attribute value. The fuzzy integral operator of interval Choquet is defined, and it is proved that this method is very effective in solving the multi-attribute decision problem of fuzzy integral of interval data through the actual case of quality management in manufacturing enterprises. At the same time, the practicability and feasibility of the method are proved.
作者 初铭畅 马静 CHU Ming-chang;MA Jing(School of Economics, Liaoning University of Technology, Jinzhou 121001, China)
出处 《辽宁工业大学学报(自然科学版)》 2018年第3期206-210,共5页 Journal of Liaoning University of Technology(Natural Science Edition)
关键词 质量管理 马田系统 区间数 CHOQUET模糊积分 quality management martian system interval number Choquet fuzzy integral
  • 相关文献

参考文献3

二级参考文献43

  • 1陈廷.决策分析[M].北京:科学出版社,1987.172-176.
  • 2Sugeno M. Theory of fuzzy integral and its applications [D]. Tokyo: Tokyo Institute of Technology, 1974.
  • 3Modave F, Dubois D, Grabisch M, et al. A Choquet integral representation in multicriteria decision making [C]//Working Notes of the AAAI Workshop Frontiers in Soft Computing and Decision Systems, 1997 : 22 - 29.
  • 4Grabisch M. A graphical interpretation of the Choquet integral [J]. IEEE Trans. on Fuzzy Systems, 2000, 8(5) : 627 - 631.
  • 5Marichal J L, Roubens M. About the Choquet integral as an ag gregator in the framework of MCDA with interacting criteria[C]//Proc. of the 4th Meeting of the EURO Working Group on Fuzzy Sets, 1999: 1-8.
  • 6Grabisch M, Roubens M. Application of the Choquet integral in multicriteria decision making[ M] // Grabisch M, Murofushi T, Sugeno M. Fuzzy measures and integrals : theory and applica tions. Heidelberg: Physica--Verlag, 2000:348-374.
  • 7Grabisch M. Fuzzy integral in multicriteria decision making [J]. Fuzzy Sets and Systems, 1995, 69(3) : 279 - 298.
  • 8Grabiseh M, Labreuehe C. Fuzzy measures and integrals in MC DA[M]//Figueira J, Greco S, Ehrgott M. Multiple criteria de- cision analysis : state of the art surveys. New York: Springer, 2005:563 - 604.
  • 9Sugeno M. Fuzzy measure and fuzzy integrals, a survey, fuzzy automata and decision processes[M]. New York: North- Holland, 1997: 89-102.
  • 10Grabisch M, Kojadinovic I, Meyer P. A review of methods for ca- pacity identification in Choquet integral based multi-attribute utility theory: applications of the Kappalab R package [J]. European Jour- nal of Operational Research, 2008, 186(2) : 766 - 785.

共引文献197

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部