期刊文献+

关于两个幂等矩阵组合群逆的探讨 被引量:1

Discussions on the Group Inverses of Combinations of Two Idempotent Matrices
原文传递
导出
摘要 运用矩阵零空间的性质证明了复数域上两个不同的非零幂等矩阵P,Q的组合a1P+b1Q+a2PQ+b2QP+…+a(2n-1)(PQ)(n-1 )P+b(2n-1)(QP)(n-1 )Q+a(2n)(PQ)n(其中a1,b1,…,b(2n-1),a(2n)∈C,a1,b1≠0)在条件(QP)n=0(n≥2)下的秩与系数的选取无关,进而证明了其群逆存在.另外,还得到了组合aP+bQ+cPQ+dQP在条件(QP)n=0下的群逆表达式. By using the properties of null space of matrices,the rank of the combinations a1P+b1Q+a2PQ+b2QP+…+a(2n-1)(PQ)(n-1 )P+b(2n-1)(QP)(n-1 )Q+a(2n)(PQ)(n )of two different nonzero idempotent matrices Pand Qover the complex field C,where a1,b1,…,a(2n)∈C,a1,b1≠0,was proved to be independent with the choice of its coefficients and under the condition(QP)n=0(n≥2).Therefore,the existence of the group inverse of the combination was also obtained.In addition,the formula for the group inverse of the combination aP+bQ+cPQ+dQP was presented under the condition(QP)n=0.
作者 曹秋红 谢涛 左可正 CAO Qiuhong;XIE Tao;ZUO Kezheng(College of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, Hubei, Chin)
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2018年第3期262-268,共7页 Journal of Wuhan University:Natural Science Edition
基金 湖北省教育厅青年项目(B2017149) 湖北师范大学博士科研启动项目(B201603) 湖北师范大学研究生科研创新项目(20170116)
关键词 幂等矩阵 线性组合 群逆 idempotent matrix linear combination group inverse
  • 相关文献

参考文献5

二级参考文献30

  • 1GroβJ, Trenkler G. Nonsingularity of the difference of two oblique projectors[J]. SIAM J Matrix Anal Appl, 1999, 21(2): 390-395.
  • 2Koliha J J, Rako ? ev?? V, Straˇskraba I. The difference and sum of projectors[J]. Lin Alg Appl, 2004, 388: 279-288.
  • 3Tian Y, Styan G P H. Rank equalities for idempotent matri- ces with applications[J]. Journal of Computational and Ap- plied Mathematics, 2006, 191: 77-97.
  • 4Koliha J J, Rako ? ev ? ? V. The nullity and rank of linearcombinations of idempotent matrices[J]. Lin Alg Appl, 2006, 418: 11-14.
  • 5Tian Y, Styan G P H. Rank equalities for idempotent and involutive matrices[J]. Lin Alg Appl, 2001, 355: 101-117.
  • 6Zuo Kezheng. Nonsingularity of two difference and the sum of two idempotent matrices [J]. Lin Alg Appl, 2010, 433: 476-482.
  • 7Deng C Y. The drazin inverses of sum and difference of idempotents[J]. Lin Alg Appl, 2009, 430: 1282-1291.
  • 8Benitez J, Rak?ev?? V. Applications of CS-decomposition in linear combinations of two orthogonal projectors [J]. Appl Mathe and Comput, 2008, 203: 761-769.
  • 9Hegland M, Garcke J, Challis V. The combination technique and some generalizations [J]. Lin Alg Appl, 2007, 420: 76-88.
  • 10Golub G H, Van Loan C F. Matrix Computations[M]. Third edition. Baltimore, M D: Johns Hopkins University Press, 1996.

共引文献14

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部