摘要
运用矩阵零空间的性质证明了复数域上两个不同的非零幂等矩阵P,Q的组合a1P+b1Q+a2PQ+b2QP+…+a(2n-1)(PQ)(n-1 )P+b(2n-1)(QP)(n-1 )Q+a(2n)(PQ)n(其中a1,b1,…,b(2n-1),a(2n)∈C,a1,b1≠0)在条件(QP)n=0(n≥2)下的秩与系数的选取无关,进而证明了其群逆存在.另外,还得到了组合aP+bQ+cPQ+dQP在条件(QP)n=0下的群逆表达式.
By using the properties of null space of matrices,the rank of the combinations a1P+b1Q+a2PQ+b2QP+…+a(2n-1)(PQ)(n-1 )P+b(2n-1)(QP)(n-1 )Q+a(2n)(PQ)(n )of two different nonzero idempotent matrices Pand Qover the complex field C,where a1,b1,…,a(2n)∈C,a1,b1≠0,was proved to be independent with the choice of its coefficients and under the condition(QP)n=0(n≥2).Therefore,the existence of the group inverse of the combination was also obtained.In addition,the formula for the group inverse of the combination aP+bQ+cPQ+dQP was presented under the condition(QP)n=0.
作者
曹秋红
谢涛
左可正
CAO Qiuhong;XIE Tao;ZUO Kezheng(College of Mathematics and Statistics, Hubei Normal University, Huangshi 435002, Hubei, Chin)
出处
《武汉大学学报(理学版)》
CAS
CSCD
北大核心
2018年第3期262-268,共7页
Journal of Wuhan University:Natural Science Edition
基金
湖北省教育厅青年项目(B2017149)
湖北师范大学博士科研启动项目(B201603)
湖北师范大学研究生科研创新项目(20170116)
关键词
幂等矩阵
线性组合
群逆
idempotent matrix
linear combination
group inverse