期刊文献+

基于多元copula函数的串联系统应力-强度模型可靠度的非参数估计 被引量:3

Nonparametric Estimation for the Reliability of a Series System Stress-Strength Model Based on Multiple Copula Function
原文传递
导出
摘要 针对多部件的串联系统应力-强度模型可靠度的估计问题,利用多元Farlie-Gumbel-Morgenstern copula(FGM)函数或多元Clayton copula函数来度量变量之间的相关性,给出了在变量非删失或右删失情形下模型可靠度的非参数估计,并证明了估计量的渐近性质.数值模拟的结果表明该方法在有限样本下表现良好. To estimate the reliability of a series system the stress-strength model with multiple components,we utilize the multivariate Farlie-Gumbel-Morgenstern(FGM)copula function or multivariate Clayton copula function to measure the correlations of variables.We obtained the nonparametric estimation for the reliability under no censored or right censored cases and verified the asymptotic properties of the resultant estimators.Simulation results show that the proposed method performs well in finite samples.
作者 祁辉 魏毅 QI Hui;WEI Yi(Institute of Information Engineering/ Digital Fujian Research Institute for Industrial Energy Big Data, Sanming University, Sanming 365004, Fujian, China;School of Mathematics and Statistics, Wuhan University, Wuhan 430072, Hubei, China)
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2018年第3期269-277,共9页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金(11401341) 福建省自然科学基金(2016J01681) 福建省教育厅中青年基金(JAT160468) 福建省高校杰出青年科研人才培育计划(2015) 福建省高校新世纪优秀人才支持计划([2016]23号)资助项目
关键词 应力-强度模型 连接函数 Kaplan-Meier估计量 右删失 stress-strength model copula function Kaplan-Meier estimator right censored
  • 相关文献

参考文献3

二级参考文献44

  • 1严士健,概率论基础,1982年
  • 2Johnson R A. Stress-strength models for reliability[M]. In: Handbook of Statistics, Vol. 7, Krishnaiah P R, Rao C R, Ed. North Holland: Elsevier, 1988, 27-54.
  • 3Weerahandi S, Johnson R A. Testing reliability in a stress-strength model when X and Y are normally distributed[J]. Technometrics, 1992, 34: 83-91.
  • 4Guo H, Krishnamoorthy K. New approximate inferential methods for the reliability parame- ter in a stress-strength model: the normal case[J]. Communications in Statistics-Theory and Methods, 2004, 33: 1715-1731.
  • 5McCool J I. Inference on P(Y < X) in the Weibull case[J]. Communications in Statistics- Simulation and Computations, 1991, 20: 129-148.
  • 6Kundu D, Gupta R D. Estimation of R = P(Y < X) for Weibull distribution[J]. IEEE Transaction on Reliability, 2006, 55: 270-280.
  • 7Krishnamoortby K, Lin Y. Confidence limits for stress-strength reliability involving Weibull models[J]. Journal of Statistical Planning and Inference, 2010, 140: 1754-1764. Baklizi A. Likelihood and Bayesian estimation of Pr(X < Y) using lower record values from generalized exponential distribution[J]. Computational Statistics and Data Analysis, 2008, 52: 346-3473.
  • 8Kundu D, Gupta R D. Estimation of R = P(Y < X) for the generalized exponential distri- bution[J]. Metrika, 2005, 61: 291-308.
  • 9Baklizi A. Likelihood and Bayesian estimation of Pr(X < Y) using lower record values from generalized exponential distribution[J]. Computational Statistics and Data Analysis, 2008, 52: 3468-3473.
  • 10Lio Y L, Tsai T R. Estimation of 5 --- P(X progressively first failure-censored samples[J] 322. < Y) for Burr XII distribution based on the Journal of Applied Statistics, 2012, 39: 309-.

共引文献12

同被引文献55

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部