摘要
文章首先利用ARIMA(1,1,1)模型、Holt指数平滑模型、M估计值稳健回归等单项预测方法对我国2008—2016年的就业人数进行预测。随后,通过以B型关联度作为目标函数,并引入GIOWA算子,构建了变权组合预测模型对就业人数进行组合预测。研究结果表明,基于B型关联度和GIOWA算子的组合预测模型的预测精度要显著好于单项预测。
This paper firstly carries out a single forecast of China's employment population from 2008 to 2016 by using single forecasting methods such as ARIMA(1,1,1) model, Holt exponential smoothing model and M estimated value steady regression model. Then, the paper constructs changeable weight combination forecast model by using B-mode Relational Degree as objective function and bringing in GIOWA operator. Results show that the forecasting precision of combination forecast based on B-mode Relational Degree and GIOWA operator is remarkably higher than that of single forecast.
作者
潘婉彬
黄磊
Pan Wanbin;Huang Lei(School of Management, University of Science and Technology of China, Hefei 230026, Chin)
出处
《统计与决策》
CSSCI
北大核心
2018年第11期73-76,共4页
Statistics & Decision
基金
国家自然科学基金青年项目(71301158)
教育部人文社会科学研究青年基金项目(13YJCZH134)
关键词
B型关联度
GIOWA算子
就业预测
B-mode relational degree
GIOWA operator
employment population forecast