摘要
在WBR_0-代数中引入了蕴涵式条件(Imp)和可分解性条件(Dis),证明了在WBR_0-代数中这两个条件等价。引入了(正定)关联WBR_0-代数概念,并证明了满足(Imp)条件的WBR_0-代数与(正定)关联BR0-代数等价。我们也证明了蕴涵式WBR_0-代数与Boole代数等价,由此获得了WBR_0-代数成为Boole代数的四个充要条件。
In WBR0-algebras,we introduced the implication type condition(Imp)and dissoluble condition(Dis).It is proved that in WBR_0-algebras,the two conditions are equivalent.We also introduced the concept of(positive)implicative WBR0-algebras.It is proved that implication type WBR0-algebras are equivalent to(positive)implicative BR0-algebras.We also proved that implication type WBR0-algebras are equivalent to Boolean algebras,obtaining four necessary and sufficient conditions for WBR0-algebras to be Boolean algebras.
作者
凌雪岷
徐罗山
杨凌云
LING Xue-min;XU Luo-shan;YANG Ling-yun(Department of Common Education, Anhui Xinhua University, Hefei 230011, China;Department of Mathematics, Yangzhou University, Yangzhou 225002, China;Schoolof Mathematics and Statistics,Jiangsu Normal University,Xuzhou 222116 ,China)
出处
《模糊系统与数学》
北大核心
2018年第3期16-22,共7页
Fuzzy Systems and Mathematics
基金
国家自然科学基金资助项目(11671008
61300153)
江苏省高校自然科学基金资助项目(15KJD110006)
江苏高校品牌专业建设工程项目(PPZY2015B109
PPZY2015A013)
安徽省质量工程一般项目(2017jyxm30)