摘要
In this study, the Ag/Ag Cl/WO3 plasmonic Z-scheme photocatalysts with different contents of Ag/Ag Cl nanoparticles(NPs) were prepared through a facile ultrasonic precipitation method in geothermal water,wherein the geothermal water served as the chlorine source. Then the photocatalytic activity was investigated by degradation of 4-Aminobenzoic acid(4-ABA) under visible-light irradiation. It was found that the as-prepared 50 wt% Ag/Ag Cl/WO3 photocatalyst showed the highest photocatalytic efficiency with 25.12 and 3.53 times higher than those of pure WO3 and Ag/Ag Cl, respectively. The active species trapping experiments indicated that h+and ·O2-were key factors in 4-ABA photodegradation process. The possible plasmonic Z-scheme photocatalytic mechanism of photocatalytic reaction for 4-ABA degradation was proposed based on systematical characterizations. We hope this paper could give new ideas for further exploiting geothermal energy to design and fabricate highly efficient visible-light-driven photocatalysts for environmental remediation.
In this study, the Ag/Ag Cl/WO3 plasmonic Z-scheme photocatalysts with different contents of Ag/Ag Cl nanoparticles(NPs) were prepared through a facile ultrasonic precipitation method in geothermal water,wherein the geothermal water served as the chlorine source. Then the photocatalytic activity was investigated by degradation of 4-Aminobenzoic acid(4-ABA) under visible-light irradiation. It was found that the as-prepared 50 wt% Ag/Ag Cl/WO3 photocatalyst showed the highest photocatalytic efficiency with 25.12 and 3.53 times higher than those of pure WO3 and Ag/Ag Cl, respectively. The active species trapping experiments indicated that h+and ·O2-were key factors in 4-ABA photodegradation process. The possible plasmonic Z-scheme photocatalytic mechanism of photocatalytic reaction for 4-ABA degradation was proposed based on systematical characterizations. We hope this paper could give new ideas for further exploiting geothermal energy to design and fabricate highly efficient visible-light-driven photocatalysts for environmental remediation.
基金
the financial support by the National Natural Science Foundation of China (grant no. 51272107 and 51372118)
the Doctor Discipline Special Research Foundation of Chinese Ministry of Education (grant no. 20133219110015)