期刊文献+

驾驶员疲劳状态检测方法研究 被引量:1

Research on Driver Fatigue State Testing Methods
下载PDF
导出
摘要 为解决由于疲劳驾驶导致交通事故的问题,采用视频图像分析技术处理疲劳的相关特征,运用基于训练的Adaboost人脸检测算法精确定位司机脸部和眼睛区域,实时采集眼睛二值化区域面积,采用阈值比较法进行眨眼判断,并提取眼皮疲劳参数AECS(Average Eyelid Closing Speed)和PERCLOS(Percent Eyelid Closure over the Pupil Time),进行综合疲劳状态分析,最终确定是否疲劳驾驶。实验结果显示,人脸和人眼检测的精度都有较大程度提高,设计的软件可实时监测驾驶员疲劳状态,有效防止疲劳驾驶。 To solve the problem of traffic accidents due to fatigue driving,we use video image processing related characteristics of fatigue analysis technology,use Adaboost face detection algorithm based on training precise positioning driver face and eye area,real-time acquisition eyes area binarization,a judging threshold value comparison method is adopted to improve the blink of an eye,and extract the AECS( Average Eyelid Closing Speed) eyelid fatigue parameters, the PERCLOS( Percent of Eyelid Closure over the Pupil Time), a comprehensive state of fatigue analysis,ultimately determine whether fatigue driving. The experiment results show that the precision of the face and eye detection has greatly improved,the designed software can detect the driver’s fatigue state by real time and avoid fatigue driving.
作者 张雯頩 康冰 ZHANG Wenping;KANG Bing(Learning Service Center, Science and Technology Association of Jilin Province, Changchun 130022,China;College of Communication Engineering, Jilin University, Changchun 130022, China)
出处 《吉林大学学报(信息科学版)》 CAS 2018年第3期252-259,共8页 Journal of Jilin University(Information Science Edition)
基金 国家自然科学基金资助项目(61503151) 吉林省省级产业创新专项基金资助项目(2017C032-4)
关键词 图像预处理 ADABOOST算法 人脸检测 疲劳驾驶 image preprocessing Adaboost face detection fatigue driving
  • 相关文献

参考文献5

二级参考文献31

  • 1周维新,李磊.汽车主动安全性的人机因素分析[J].人类工效学,1999,5(4):59-61. 被引量:3
  • 2陈洪亮,张保忠.交通路线引导系统及其技术发展跟踪[J].中国公路学报,1996,9(2):84-89. 被引量:9
  • 3许录平,谢维信.人的因素及对人机系统的影响[J].电子科技,1996,9(3):9-12. 被引量:7
  • 4[1]Tian Ying li, Takeo Kanade, Cohn Jeffrey F. Eye-State Action Unit Detection by Gabor Wavelet[ C] .ICMI 2000:143 - 1.50.
  • 5[2]Pontland A, Moghaddam B, Starne T. View-Based and Modular Eigenspace for Face Recognition[C]. Proc. IEEE Conf. on Computer Vision and Pattern Recognition. Seattle, WA, USA, 1994: 84-91.
  • 6[3]Yuille A, Hallinan P, Cohen D. Feature Extraction from Faces Using Deformable Templates[J]. Int. J. Gomputer Vision, 1992, 8(2): 99-111.
  • 7[4]Turk M A, Pentland A. Face Reeognition Using Eigenfaces[C]. Proc.IEEE Conf. on Computer Vision and Pattern Recoginition, Maui, HI,USA, 1991: 586- 591.
  • 8[5]Henry A R, Takeo Kanade. Neural Network-Based Face Detection[J].IEEE Trans. on Patten Analysis and Machine Intelligence, 1998, 20(1): 23-38.
  • 9H H Rosenbrock. Flexible Manufacturing System in which the Operator is not subservient to the machine[M]. Research project mines. Urnist,Manchester, 1983.
  • 10阿久津英作.意识低下检知技术の开发状况[J].自动车技术,1995,(7):14-18.

共引文献64

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部