期刊文献+

Effect of Various Additives on Performance of Plasma Electrolytic Oxidation Coatings Formed on AZ31 Magnesium Alloy in the Phosphate Electrolytes 被引量:3

Effect of Various Additives on Performance of Plasma Electrolytic Oxidation Coatings Formed on AZ31 Magnesium Alloy in the Phosphate Electrolytes
下载PDF
导出
摘要 Plasma electrolytic oxidation(PEO) coatings were prepared on AZ31 magnesium alloy using alkaline phosphate as base electrolyte system, and with the addition of sodium silicate(Na2SiO3), sodium aluminate(NaAlO2) and potassium fluorozirconate(K2ZrF6) as additives. The microstructure, phase composition and element composition as well as surface profile of the PEO coatings were analyzed by means of scanning electron microscopy(SEM), X-ray diffraction(XRD), energy dispersive X-ray spectroscopy(EDS), and threedimensional(3 D) optical profilometry. The corrosion and wear properties were evaluated by electrochemical potentiodynamic polarization in 3.5 wt% Na Cl solution and ball-on-disc wear tests, respectively. The results showed that the anions of the additives effectively participated in the coating formation influencing its microstructural features, chemical composition, corrosion resistance and tribological behaviour. It was observed that the sample treated by PEO in the electrolyte solution containing K2ZrF6 as an additive showed better corrosion and abrasive resistance. Plasma electrolytic oxidation(PEO) coatings were prepared on AZ31 magnesium alloy using alkaline phosphate as base electrolyte system, and with the addition of sodium silicate(Na2SiO3), sodium aluminate(NaAlO2) and potassium fluorozirconate(K2ZrF6) as additives. The microstructure, phase composition and element composition as well as surface profile of the PEO coatings were analyzed by means of scanning electron microscopy(SEM), X-ray diffraction(XRD), energy dispersive X-ray spectroscopy(EDS), and threedimensional(3 D) optical profilometry. The corrosion and wear properties were evaluated by electrochemical potentiodynamic polarization in 3.5 wt% Na Cl solution and ball-on-disc wear tests, respectively. The results showed that the anions of the additives effectively participated in the coating formation influencing its microstructural features, chemical composition, corrosion resistance and tribological behaviour. It was observed that the sample treated by PEO in the electrolyte solution containing K2ZrF6 as an additive showed better corrosion and abrasive resistance.
出处 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第3期703-709,共7页 武汉理工大学学报(材料科学英文版)
基金 Funded by National Natural Science Foundation of China(No.51371039) Zhejiang Provincial Natural Science Foundation of China(No.LGG18E020004) Open Foundation of Zhejiang Provincial Top Key Discipline of Mechanical Engineering Science and Technology Project of Zhejiang Province(No.2015C37037)
关键词 magnesium alloy plasma electrolytic oxidation additives microstructure corrosion resistance magnesium alloy plasma electrolytic oxidation additives microstructure corrosion resistance
  • 相关文献

参考文献4

二级参考文献12

共引文献6

同被引文献38

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部