期刊文献+

一种基于字典学习的深度图像超分辨率重建方法

Method of Depth Image Super-Resolution based on Dictionary Learning
下载PDF
导出
摘要 随着深度图像获取技术的快速发展,深度信息(拍摄物与成像平面的距离)已广泛应用在人机交互、虚拟现实和三维重建等领域。然而,由于成像分辨率低和成像质量差等因素影响,传统深度相机(如TOF,Time-of-flight)无法很好满足实际应用需求。研究深度图像的超分辨率重构问题,旨在提高深度图像的分辨率与质量,提出一种基于字典学习的深度图像超分辨率重建方法,首先从样本中获取先验信息,采用学习策略对低分辨率图像进行初始深度重建;然后获得足够的边缘信息,利用边缘信息对初始重建图像进行联合重建,最终获得高分辨率深度图像。实验结果表明,相比传统方法,本文方法能够取得更好的深度图像超分辨重建效果。 Recently, depth images, which captured by depth cameras such as TOF(time-of-flight), with pixel values representing the distances between objects and the imaging plane, are widely used in virtual reality, man-machine interaction, 3-D scenes reconstruction and other fields. However, these applications are limited by the low resolution and low quality of the depth images. Address the super-resolution of depth image, aiming at the improvement of both resolution and quality. A super-resolution method which adopts the dictionary learning for depth image is proposed. Firstly obtain the sufficient prior information from the sampled depth images to recovery an initial high resolution image; Then, sufficient edge information is obtained for a second reconstruction combining the initial reconstruction to obtain the higher performance. The experimental results show that the proposed method achieves better performance than the referenced.
作者 肖方生 李思晗 上官宏 王安红 XIAO Fangsheng;LI Sihan;SHANG Guanhong;WANG Anhono(: 1 The Second Research Institute of CETC, Taiyuan 030024, China;Taiyuan University of Science and To.nolo, Teiyuan 030024, China)
出处 《电子工艺技术》 2018年第3期163-167,共5页 Electronics Process Technology
关键词 深度图像 字典学习 超分辨率重建 depth image dictionary learning super resolution
  • 相关文献

参考文献2

二级参考文献11

  • 1孙成叶,桑农,张天序,王新赛.图像双线性插值无级放大及其运算量分析[J].计算机工程,2005,31(9):167-169. 被引量:17
  • 2张良培,沈焕锋,张洪艳,袁强强.图像超分辨率重建[M].北京:科学出版社.2012.3-11.
  • 3Tsai R Y, Huang T S. Multi - frame image restoration and registration [J]. Advances in Computer Vision and Image Processing, 1984,1 (2) :317 - 339.
  • 4Yang J, Wright J, Huang T,et al. Image super - resolution as sparse representation of raw image patches [C]. Toronto: IEEE Conference on Computer Vision and Pattern Recogni- tion ,2008 : 1 - 8.
  • 5Yang J C, Wright J, Ma Y. Image super - resolution via sparse representation [ J]. IEEE Transactions on Image Pro- cessing,2010,19 ( 11 ) :2861 - 2873.
  • 6Donoho D L. For most large underdetermined systems of line- ar equations,the minimal 11 -norm solution is also the spar- sest solution [J]. Communications on Pure and Applied Mathematics, 2006,59 ( 6 ) : 797 - 829.
  • 7Donoho D L. For most large underdetermined systems of line- ar equations,the minimal 11 -norm near- solution approxi- mates the sparsest near- solution I J]. Communications on Pure and Applied Mathematics ,2006,59( 7 ) :907 - 934.
  • 8lee H, Battle A, Raina R, et al. Efficient sparse coding algo- rithms [ C]. Paris:Advances in Neural Information Process- ing Systems ,2006:801 - 808.
  • 9Pati Y C ,Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit:recursive function approximation with applications to wavelet decomposition [ C ]. Holand: The 27th Asilomar Con- ference on Signals,Systems and Computers, 1993:40 -44.
  • 10Wang Z,Bovik A C,Sheikh H R,et al. Image quality assess- ment:from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004,13 (4) : 600 - 612.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部