期刊文献+

Nano-SiC_P particles distribution and mechanical properties of Al-matrix composites prepared by stir casting and ultrasonic treatment 被引量:2

Nano-SiC_P particles distribution and mechanical properties of Al-matrix composites prepared by stir casting and ultrasonic treatment
下载PDF
导出
摘要 Nano-ceramic particles are generally difficult to add into molten metal because of poor wettability. Nano-SiC_Particles reinforced A356 aluminum alloy composites were prepared by a new complex process, i.e., a molten-metal process combined with high energy ball milling and ultrasonic vibration methods. The nano particles were β-SiC_P with an average diameter of 40 nm, and pre-oxidized at about 850 °C to form an oxide layer with a thickness of approximately 3 nm. The mm-sized composite granules containing nano-SiC_P were fi rstly produced by milling the mixture of oxidized nano-SiC_P and pure Al powders, and then were remelted in the matrix-metal melt with mechanical stirring and treated by ultrasonic vibration to prepare the composite. SEM analysis results show that the nano-SiC_P articles are distributed uniformly in the matrix and no serious agglomeration is observed. The tensile strength and elongation of the composite with 2 wt.% nano-SiC_P in as-cast state are 226 MPa and 5.5%, improved by 20% and 44%, respectively, compared with the A356 alloy. Nano-ceramic particles are generally difficult to add into molten metal because of poor wettability. Nano-SiC particles reinforced A356 aluminum alloy composites were prepared by a new complex process, i.e., a molten-metal process combined with high energy ball milling and ultrasonic vibration methods. The nano particles were β-SiCp with an average diameter of 40 nm, and pre-oxidized at about 850 ℃ to form an oxide layer with a thickness of approximately 3 nm. The mm-sized composite granules containing nano-SiCp were firstly produced by milling the mixture of oxidized nano-SiCp and pure Al powders, and then were remelted in the matrix-metal melt with mechanical stirring and treated by ultrasonic vibration to prepare the composite. SEM analysis results show that the nano-SiC particles are distributed uniformly in the matrix and no serious agglomeration is observed. The tensile strength and elongation of the composite with 2wt.% nano-SiCp in as-cast state are 226 MPa and 5.5%, improved by 20% and 44%, respectively, compared with the A356 alloy.
出处 《China Foundry》 SCIE 2018年第3期203-209,共7页 中国铸造(英文版)
基金 financially supported by the National Natural Science Foundation of China(No.51574129) Technological Innovation Special Project of Hubei Province(No.2017AAA110)
关键词 metal matrix composites SiC nanopaticles A356 aluminum alloy SOLID-LIQUID mixed CASTING ULTRASONIC vibration metal matrix composites SiC nanopaticles A356 aluminum alloy solid-liquid mixed casting ultrasonic vibration
  • 相关文献

参考文献1

二级参考文献4

共引文献1

同被引文献25

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部