摘要
针对航空活塞式直喷发动机瞬态空燃比难以精确控制、动态超调大等问题,采用基于改进的粒子群优化算法和Elman神经网络(VPSO-Elman网络)的模型预测控制算法对发动机过渡工况空燃比进行控制。在实验数据的基础上,利用发动机建模软件AMESim建立发动机模型,在MATLAB/Simulink中建立VPSO-Elman空燃比预测模型控制系统,通过联合仿真检验控制系统的性能。结果表明:瞬态工况下,相比于比例-积分-微分(PID)控制,VPSO-Elman网络模型预测控制下的空燃比超调量可以减小约20%,回调时间缩短约75%;针对不同的节气门开度变化速率,VPSO-Elman控制器同样具有良好的控制效果。
In order to solve the problems like the large dynamic overshoot in the control of transient air-fuel ratio of aero piston engine,the model predictive control strategy based on improved particle swarm optimization algorithm and Elman(VPSO-Elman)neural network was proposed.The engine model used in the simulation was established based on a real engine in AMESim.The model predictive control system was established in MATLAB/Simulink.Coupling simulation was carried out to test the effect of the model prediction control.The simulation result shows that,compared with proportional integral derivative(PID)control,using VPSO-Elman network model prediction control the air-fuel overshoot can be reduced by 20%,callback time could be reduced by about 75%;for different throttle opening rate,VPSO-Elman controller also has a good control effect.
作者
胡春明
毕延飞
王齐英
仲伟军
HU Chunming;BI Yanfei;WANG Qiying;ZHONG Weijun(Tianjin Internal Combustion Engine Research Institute, Tianjin University, Tianjin 300072, China;Stake Key Laboratory of Engines, Tianiin University, Tianjin 300072, China)
出处
《航空动力学报》
EI
CAS
CSCD
北大核心
2018年第5期1236-1244,共9页
Journal of Aerospace Power
基金
国家自然科学基金(51476112)
关键词
航空活塞式发动机
过渡工况
空燃比控制
模型预测控制
神经网络
aero piston engine
transition condition
air-fuel ratio control
model predictive control
neural network