期刊文献+

基于光子带隙中模式截止特性的单模传输研究

Single-Mode Propagation Based on The Mode Cutting-off Characteristics Within The Photonic Bandgap
下载PDF
导出
摘要 空芯光子带隙光纤拥有优越的环境适应性,但光纤中的高阶模使其在多种场合下的应用受到制约。利用光子带隙内高阶模式在小于截止波长时被强烈抑制,而基模在该波段可以稳定存在的特性,提出了实现单模传输的方法,并通过实验验证了该方法的可行性。在此基础上仿真分析了包层参数对单模传输波段的影响,计算结果表明,单模传输波段的带宽随材料折射率的增加而增加,折射率由1.445提高到2时,带宽增加2.9倍;相对倒角由0.2提高到0.8时,单模传输波段的工作波长移动310nm以上。 Hollow-core photonic bandgap fiber(HC-PBF)has excellent environment adaptability,but high-order modes(HOMs)in HC-PBF limit its applications in many areas.A method for single-mode propagation is proposed,which is based on the phenomenon that the HOMs are seriously suppressed and the fundamental modes stably exist when the operating wavelength is less than the cut-off wavelength.The method is experimentally verified.The influence of HC-PBF cladding structure parameters on the bandwidth and operating wavelength for single-mode operation is simulated.The results show that the single-mode bandwidth is broadened by ~2.9 times when the index increases from 1.445 to 2,and single-mode operating wavelength can move^310 nm when the ratio between fillet diameter and hole diameter increases from 0.2 to 0.8.
作者 徐小斌 李金恒 宋凝芳 高福宇 张智昊 XU Xiaobin;LI Jinheng;SONG Ningfang;GAO Fuyu;ZHANG Zhihao(School of Instrument Science and Opto-electronics Engin. , Beijing University of Aeronautics and Astronautics, Beijing 100191, CHN)
出处 《半导体光电》 CAS 北大核心 2018年第3期369-372,共4页 Semiconductor Optoelectronics
基金 国家自然科学基金项目(61575012 6575013)
关键词 空芯光子带隙光纤 有限元法 空间光谱分析成像 高阶模式 单模传输 hollow-core photonic bandgap fiber finite element method spatially and spectrally resolved imaging high-order mode single-mode propagation
  • 相关文献

参考文献1

二级参考文献19

  • 1Cregan R F, Mangan B J, Knight J C, et al.. Single-mode photonic band gap guidance of light in air[J]. Science, 1999, 285(5433): 1537-1539.
  • 2Poletti F, Petrovich M N, Richardson D J. Hollow-core photonic bandgap fibers: Technology and applications[J]. Nanophotonics, 2013, 2(5-6): 315-340.
  • 3Kim H K, Digonnet M J F, Kino G S. Air-core photonic-bandgap fiber-optic gyroscope[J]. J Lightwave Technol, 2006, 24(8): 3169-5174.
  • 4Digonnet M, Blin S, Kim H K, et al.. Sensitivity and stability of an air-core fibre-optic gyroscope[J]. Measurement Science & Technology, 2007, 18(10): 3089-3097.
  • 5Blin S, Kim H K, Digonnet M J F, et al.. Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber[J]. J Lightwave Technol, 2007, 25(3): 861-865.
  • 6Lloyd S W, Dangui V, Digonnet M J, et al.. Measurement of reduced backscattering noise in laser-driven fiber optic gyroscopes[J]. Opt Lett, 2010, 55(2): 121-123.
  • 7Xu X, Zhang Z, Zhang Z, et al.. Investigation of residual core ellipticity induced nonreciprocity in air-core photonic bandgap fiber optical gyroscope[J]. Opt Express, 2014, 22(22): 27228.
  • 8Saitoh K, Koshiba M. Confinement losses in air-guiding photonic bandgap fibers[J]. IEEE Photonic Technol Lett, 2003, 15(2): 236-238.
  • 9Roberts P J, Couny F, Sabert H, et al.. Ultimate low loss of hollow-core photonic crystal fibres[J]. Opt Express, 2005, 13(1): 236-244.
  • 10West J, Smith C, Borrelli N, et al.. Surface modes in air-core photonic band-gap fibers[J]. Opt Express, 2004, 12(8): 1485-1496.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部