期刊文献+

含多个非线性项的Gronwall-Bellman型非连续函数积分不等式的推广 被引量:1

Generalization of Gronwall-Bellman Type Integral Inequality of Discontinuous Functions with Multiple Nonlinear Terms
下载PDF
导出
摘要 研究了含有未知函数的多个非线性项的非连续函数积分不等式,对每一个区间的估计,在未把不等式右边第一项放大为常数,而是保持为函数的情况下,利用分析技巧给出了未知函数的上界估计.利用此结果估计了脉冲微分方程解的上界. In this paper,I give the upper bounds estimation of the unknown function contained in multiple nonlinear terms of integral inequality for discontinuous functions. I estimate each interval without enlarging the inequality of the first term on the right side to a constant,and remaining the case for a function. The result is used to estimate the upper bounds of impulsive differential equations.
作者 李自尊 LI Zizun(School of Mathematics, Sichuan University, Chengdu 610064, Sichuan;School of Mathematics and Statistics, Baize University, Baize 533000, Guangxi)
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2018年第3期305-310,共6页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11561019) 广西自然科学基金(2013GXNSFAA019022) 广西教育厅项目(201204LX423 2013LX148和KY2015YB280) 中央高校基本科研业务费专项资金(2012017YJSY141)
关键词 非连续函数积分不等式 未知函数估计 脉冲微分系统 Integral inequality for discontinuous function estimation of unknown function impulsive differential system
  • 相关文献

参考文献6

二级参考文献78

  • 1Borysenko S D. Integro-sum inequalities for functions of many independent variables[J]. Differential Equations, 1989,25(9):1638-1641.
  • 2Borysenko S D. Intergro-Sum inequalities and their use in the study of impulse systems in: Proceeding of Ⅵ internat[J]. M Kiravchuk Conf,1997.41-53.
  • 3Borysenko D S. About One Integral Inequality for Piece-wise Continuous Functions[M]. in: Proc X Int Kravchuk Conf Kyiv,2004,323.
  • 4Borysenko S D, Ciarletta M, Iovane G. Integro-sum inequalities and motion stability of systems with impulse perturbations [J]. Nonlinear Anal, 2005,62 : 417-428.
  • 5Borysenko S D, Iovane G. About Estimates of Solutions for Nonlinear Hypertolic Equations with Impulsive Perturbations on Some Hypersurfaces[M]. University of Salerno, March, 2006,7.
  • 6Yuan Gong Sun. On retarded integral inequalities and their applications[J]. J Math Anal Appl, 2005,301 : 265-275.
  • 7Iovane G. Some new integral inequalities of Bellman-Bihari type with delay for discontinous functions [J]. Nonlinear Analysis, 2007,66 : 498-508.
  • 8Gallo A, Piccirillo A M. About new analogies of Gronwall-Bellman-Bihari type inequalities for discontinuous functions and estimated solution for impulsive differential systems[J]. Nonlinear Analysis,2007,67:1550-1559.
  • 9Yu A Mitropolsking, Iovane G, Borysenko S D. About a generalization of Bellman-Bihari type inequalities for discontinuous functions and their applications[J]. Nonlinear Analysis,2007,86:2140-2185.
  • 10Bellman R.The stability of solutions of linear differential equations[J].Duke Math J,1943,10:643-647.

共引文献18

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部