期刊文献+

有向图的无符号拉普拉斯谱半径的新上下界

Some New Upper and Lower Boundon the Spectral Radius of the Signless Laplacian Matrix of a Digraph
下载PDF
导出
摘要 设G是一个n阶的简单有向连通图,令A(G)为有向图G的邻接矩阵,D(G)为有向图G的出度对角矩阵,则有向图G的无符号拉普拉斯矩阵可以表示为Q(G)=A(G)+D(G).利用图中顶点v_i的出度d_i^+和平均二次出度m_i^+,给出一些有向图G的无符号拉普拉斯矩阵谱半径q_1(G)更精细化的上下界,并通过数值例子证实新上下界的有效性. Let G be a simple connected digraph,A( G) denote its adjacency matrix,and D( G) denote the diagonal matrix of its vertex out degrees,then the signless Laplacian matrix of G is Q(G) = A( G) +D( G). In this paper,we obtain some new upper and lower bound on the spectral radius q1( G) of the signless Laplacian matrix of a digraph G. A numerical example is given to show the efficiency of our new results.
作者 何军 刘衍民 冉杰 HE Jun;LIU Yanmin;RAN Jie(School of Mathematics, Zunyi Normal College, Zunyi 563006, Guizho)
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2018年第3期348-350,共3页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(71461027) 贵州省科技厅基础研究项目基金(黔科合基础[2016]1161) 贵州省科技厅联合基金(黔科合LH字[2016]7032号) 贵州省教育厅自然科学基金(黔教合KY KY[2016]255)
关键词 有向图 无符号拉普拉斯矩阵 谱半径 digraph signless Laplacian matrix spectral radius
  • 相关文献

参考文献1

二级参考文献9

  • 1Biggs,N.L.,Algebraic GraphTheory,Second Edition,Cambridge University Press,Cambridge,1993.
  • 2Bondy,J.A.,Murty,U.S.R.,Graph Theory with Applications,North Holland,New York,1976.
  • 3Hoffman,A.J.,Some recent results on spectral properties of graphs,In:H.Sachs,H.J.Voss,H.Walther,eds.,Beitrage ZurGraphentheorie,Int.Koll.Manebach,Leipzig,1968,75-80.
  • 4Doob,M.,An interrelation between line graphs,eigenvalues and matrix,Journal ofCombin.Theory Ser.B.,1973,15:40-50.
  • 5Cvetkovic,D.,Doob,M.,Sachs,H.,Spectra of Graphs,Theory and Application,AcademicPress,New York,1980.
  • 6Fiedler,M.,Algebraic connectivity of graphs,Czechoslovak Math.J.,1973,23:298-305.
  • 7Mohar,B.,The Laplacian Spectrum of Graphs,in GraphTheory,In:Y.Alvia,G.Chartrand,O.R.Ollermann,et al.eds.,Combinatorics andApplications,Wiley-Interscience,New York,1991,871-898.
  • 8Merris,R.,Laplacian matrices of graphs:A survey,Linear Algebra andApplications,1994,197/198:143-176.
  • 9Desai,M.,Rao,V.,A characterization of the smallest eigenvalue of a graph,Journal ofGraph Theory,1994,18(2):181-194.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部