期刊文献+

一类双质子耦合格点系统的对称周期解

Even and Periodic Solutions of a Class of Lattices Composed of Two Particles
下载PDF
导出
摘要 研究一类模拟2个质子相互作用的二阶带非负权耦合方程的对称周期解的问题.在一类关于时间映射的超线性条件和次线性条件下,利用相平面分析方法对方程进行研究,分别得到超线性方程无穷多个对称调和解的存在性以及次线性方程无穷多个对称次调和解的存在性. In this paper,we are concerned with the existence of the even and periodic solutions for a class of coupled equations that model the motion of two particles on the real line. Under some super-linear and sublinear conditions on Time-mapping and by a fine phase-plane analysis,we prove the existence of infinite symmetric and harmonic solutions for super-linear equations as well as infinite symmetric and subharmonic solutions for the sublinear equations.
作者 王超 黄娟娟 杨潇 WANG Chao;HUANG Juanjuan;YANG Xiao(School of Mathematics and Statistics, Yaacheng Teacher' s Univercity, Yancheng 224001, Jiangsu)
出处 《四川师范大学学报(自然科学版)》 CAS 北大核心 2018年第4期500-505,共6页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(11571249) 江苏省自然科学基金(BK20171275)
关键词 超线性 次线性 时间映射 格点系统 对称周期解 super-linear sub-linear time-mapping lattices even and periodic solutions
  • 相关文献

参考文献2

二级参考文献30

  • 1Ding T, Zanolin F. Periodic solutions of Duffings' equation with superquadratic potential[ J]. J Diff Eqns,1992,97:328 - 378.
  • 2Anal, 1996 Qian D. Oil forced nonlinear oscillations for the second order equations with semiquadratic potential[ J ]. Nonlinear 26:1715 - 1731.
  • 3Papini D, Zanolin F. Differential equations with indefinite weight : Boundary value problems and qualitative properties of the solu- tions[J ]. Turin Fortnight Lectures on Nonlinear Analysis,Rend Sem Mat Univ Pol Torino,2002,60:265 -295.
  • 4Papini D. '.Boundary value problems for second order differential equations with superlinear terms:A topological approach [ J ]. Trrieste ,2000.
  • 5Papini D, Zanoni F. A topological approach to superlinear indefinite boundary - value problem [ J ]. Topoi Methods Nonlinear Anal,2000,15:203 - 233.
  • 6Papini D, Zanolin F. Periodic points and chaotic - like dynamics of planal maps associated to nonlinear Hill' s equations with in- definite weJight [ J ]. Georgian Mathematical J,2002,9 : 339 - 366.
  • 7Papini D, 7anolin F. On tile periodic boundary value problem and chaotic - like dynamics for nonlinear Hill' s equations [ J ]. Adv Nonlinear Stud, 2004,4 : 71 - 91.
  • 8Papini D, Zanolin F. Fixed points, periodic points, and coin- tossing sequences for mappings defined on two- dimensional cells [ J ]. Fixed Point Theory Appl,2004,2004 : 113 - 134.
  • 9Papini D, 'Zanolin F. Some results on periodic points and chaotic dynamics arising from the study of the nonlinear Hill equations[J]. Rend Sere Mat Univ Pol Torino,2007 ,65 :115 - 157.
  • 10Ding T, Iannacci R, Zanolin F. Existence and multiplicity results for periodic solutions of semilinear Duffing equations [ J ]. J Diff Eqns, 1993,105 ~ 364 - 409.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部