期刊文献+

Multipoint optimization on fuel efficiency in conceptual design of wide-body aircraft 被引量:8

Multipoint optimization on fuel efficiency in conceptual design of wide-body aircraft
原文传递
导出
摘要 Aircraft conceptual design optimizations that maximize the performance at a design condition (single-point) may result in designs with unsatisfying off-design performance. To further improve aircraft efficiency under actual flight operations, there is a need to consider multiple flight conditions (multipoint) in aircraft conceptual design and optimization. A new strategy for multipoint optimizations in aircraft conceptual design is proposed in this paper. A wide-body aircraft is taken as an example for both single-point and multipoint optimizations with the objective of maximizing the specific hourly productivity. Boeing 787-8 flight data was used in the multipoint opti- mization to reflect the true objective function. The results show that the optimal design from the multipoint optimization has a 7.72% total specific hourly productivity increase of entire flight missions compared with that of the baseline aircraft, while the increase in the total specific hourly productivity from the single-point optimal design is only 5.73%. The differences between the results of single-point and multipoint optimizations indicate that there is a good option to further improve aircraft efficiency by considering actual flight conditions in aircraft conceptual design and optimization. Aircraft conceptual design optimizations that maximize the performance at a design condition (single-point) may result in designs with unsatisfying off-design performance. To further improve aircraft efficiency under actual flight operations, there is a need to consider multiple flight conditions (multipoint) in aircraft conceptual design and optimization. A new strategy for multipoint optimizations in aircraft conceptual design is proposed in this paper. A wide-body aircraft is taken as an example for both single-point and multipoint optimizations with the objective of maximizing the specific hourly productivity. Boeing 787-8 flight data was used in the multipoint opti- mization to reflect the true objective function. The results show that the optimal design from the multipoint optimization has a 7.72% total specific hourly productivity increase of entire flight missions compared with that of the baseline aircraft, while the increase in the total specific hourly productivity from the single-point optimal design is only 5.73%. The differences between the results of single-point and multipoint optimizations indicate that there is a good option to further improve aircraft efficiency by considering actual flight conditions in aircraft conceptual design and optimization.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第1期99-106,共8页 中国航空学报(英文版)
基金 supported by the Fundamental Research Funds for Central Universities(NUAA NS2016010)
关键词 Aircraft conceptual design Fuel efficiency Multiple missions OPTIMIZATION Wide-body aircraft Aircraft conceptual design Fuel efficiency Multiple missions Optimization Wide-body aircraft
  • 相关文献

参考文献4

二级参考文献48

共引文献44

同被引文献161

引证文献8

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部