期刊文献+

Magnetic confinement fusion: a brief review 被引量:7

Magnetic confinement fusion: a brief review
原文传递
导出
摘要 Fusion energy is considered to be the ultimate energy source, which does not contribute to climate change compared with conventional fossil fuel. It is massive compared with unconventional renewable energy and demonstrates fewer safety features compared with unconventional fission energy. During the past several decades, never-ceasing efforts have been made to peacefully utilize the fusion energy in various approaches, especially inertial confinement and magnetic confinement. In this paper, the main developments of magnetic confinement fusion with emphasis on confinement systems as well as challenges of materials related to superconducting magnet and plasmafacing components are reviewed. The scientific feasibility of magnetic confinement fusion has been demonstrated in JET, TFTR, JT-60, and EAST, which instigates the construction of the International Thermonuclear Experimental Reactor (ITER). A fusion roadmap to DEMO and commercial fusion power plant has been established and steady progresses have been made to achieve the ultimate energy source. Fusion energy is considered to be the ultimate energy source, which does not contribute to climate change compared with conventional fossil fuel. It is massive compared with unconventional renewable energy and demonstrates fewer safety features compared with unconventional fission energy. During the past several decades, never-ceasing efforts have been made to peacefully utilize the fusion energy in various approaches, especially inertial confinement and magnetic confinement. In this paper, the main developments of magnetic confinement fusion with emphasis on confinement systems as well as challenges of materials related to superconducting magnet and plasmafacing components are reviewed. The scientific feasibility of magnetic confinement fusion has been demonstrated in JET, TFTR, JT-60, and EAST, which instigates the construction of the International Thermonuclear Experimental Reactor (ITER). A fusion roadmap to DEMO and commercial fusion power plant has been established and steady progresses have been made to achieve the ultimate energy source.
出处 《Frontiers in Energy》 SCIE CSCD 2018年第2期305-313,共9页 能源前沿(英文版)
基金 This work was financially supported by the State Key Laboratory of Technologies in Space Cryogenic Propellants (Grant No. SKLTSCPQN201501), the National Magnetic Confinement Fusion Science Program (Grant No. 2015GB121001), and the National Natural Science Foundation of China (Grant Nos. 51427806, 51401224, and 51577185).
关键词 fusion energy magnetic confinement TOKAMAK structural material superconducting magnet fusion energy magnetic confinement tokamak structural material superconducting magnet
  • 相关文献

同被引文献21

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部