期刊文献+

过表达长链鞘氨醇激酶基因LCB4提高酿酒酵母抑制物耐受性 被引量:2

Improvement of inhibitors tolerance of Saccharomyces cerevisiae by overexpressing of long chain sphingoid kinases encoding gene LCB4
原文传递
导出
摘要 木质纤维素预处理过程中产生的有毒副产物严重影响了纤维素乙醇发酵,提高酿酒酵母抑制物耐受性是提高纤维素乙醇发酵效率的有效方法。文中通过过表达LCB4基因,研究了重组菌株S288C-LCB4在乙酸、糠醛和香草醛胁迫下的细胞生长和乙醇发酵性能。结果表明,LCB4过表达菌株在分别含有10 g/L乙酸、1.5 g/L糠醛和1 g/L香草醛的平板中生长均优于对照菌株;在分别含有10 g/L乙酸、3 g/L糠醛和2 g/L香草醛的液体乙醇发酵过程中,重组菌株S288C-LCB4乙醇发酵产率分别为0.85 g/(L·h)、0.76 g/(L·h)和1.12 g/(L·h),比对照菌株提高了34.9%、85.4%和330.8%;且糠醛和香草醛胁迫下发酵时间分别缩短了30 h和44 h。根据发酵终点发酵液代谢物分析发现重组菌株比对照菌株产生了更多甘油、海藻糖和琥珀酸,这些物质有利于增强菌株的抑制物耐受性。综上所述,LCB4基因过表达可显著提高酿酒酵母S288C在乙酸、糠醛和香草醛胁迫下的乙醇发酵性能。 By-products released from pretreatment process of lignocellulose seriously hinder the development of cellulosic fuel ethanol. Therefore, the great way to increase the efficiency of cellulosic ethanol production is improvement of Saccharomyces cerevisiae tolerance to these inhibitors. In this work, the effects of LCB4 gene overexpression on cell growth and ethanol fermentation in S. cerevisiae S288 C under acetic acid, furfural and vanillin stresses were studied. Compared to the control strain S288 C-HO, the recombinant strain S288 C-LCB4 grew better on YPD solid medium containing 10 g/L acetic acid, 1.5 g/L furfural and 1 g/L vanillin. Ethanol yields of recombinant strain S288 C-LCB4 were 0.85 g/(L·h), 0.76 g/(L·h) and 1.12 g/(L·h) when 10 g/L acetic acid, 3 g/L furfural and 2 g/L vanillin were supplemented into the fermentation medium respectively, which increased by 34.9%, 85.4% and 330.8% than the control strain S288 C-HO. Meanwhile, ethanol fermentation time was reduced by 30 h and 44 h under furfural and vanillin stresses respectively. Further metabolites analysis in fermentation broth showed that the recombinant strain produced more protective compounds, such as glycerol, trehalose and succinic acid, than the control strain, which could be the reason for enhancing strain tolerance to these inhibitors from pretreatment process of lignocellulose. The results indicated that overexpression of LCB4 gene could significantly improve ethanol fermentation in S. cerevisiae S288 C under acetic acid, furfural and vanillin stresses.
作者 何艳艳 孜力汗 张宝会 许建韧 王丹丹 白凤武 Yanyan He;Lihan Zi;Baohui Zhangl;Jianren Xu;Dandan Wang;and Fengwu Bai(School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China;State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China)
出处 《生物工程学报》 CAS CSCD 北大核心 2018年第6期906-915,共10页 Chinese Journal of Biotechnology
基金 国家自然科学基金(No.21406029)资助~~
关键词 乙醇发酵 LCB4 乙酸胁迫 糠醛胁迫 香草醛胁迫 ethanol fermentation LCB4 acetic acid stress furfural stress vanillin stress
  • 相关文献

参考文献2

二级参考文献25

  • 1张吉娜,何秀萍,郭雪娜,刘楠,张博润.低双乙酰抗老化啤酒酵母工程菌的构建[J].生物工程学报,2005,21(6):942-946. 被引量:27
  • 2Madhavan A, Srivastava A, Kondo A, et al. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae[J]. Critical Review in Biotechnology, 2012, 32(1): 22-48.
  • 3Zhao XQ, Bai FW. Mechanism of yeast ethanol tolerance and its manipulation for efficient fuel ethanol production[J]. Journal of Biotechnology, 2009, 144(1): 23-30.
  • 4Wallace-Salinas V, Gorwa-Grauslund MF. Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature[J]. Biotechnology for Biofuels, 2013, 6(1): 151.
  • 5Costa DA, de Souza C J, Costa PS, et al. Physiological characterization of thermotolerant yeast for cellulosic ethanol production[J]. Applied Microbiology and Biotechnology, 2014, 98(8): 3829-3840.
  • 6Abdel-Banat BM, Hoshida H, Ano A, et al. High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?[J]. Applied Microbiology and Biotechnology, 2010, 85(4): 861-867.
  • 7Moehle CM, Tizard R, Lemmon SK, et al. Protease B of the lysosomelike vacuole of the yeast Saccharomyces cerevisiae is homologous to the subtilisin family of serine proteases[J]. Molecular and Cellular Biology, 1987, 7(12): 4390-4399.
  • 8Naik RR, Nebes V, Jones EW. Regulation of the proteinase B structural gene PRB1 in Saccharomyees cerevisiae[J]. Journal of Bacteriology, 1997, 179(5): 1469-1474.
  • 9Dumond H, Danielou N, Pinto M, et al. A large-scale study of Yaplp-dependent genes in normal aerobic and H2O2- stress conditions: the role of Yaplp in cell proliferation control in yeast[J]. Molecular Microbiology, 2000, 36(4): 830-845.
  • 10Wu CY, Bird AJ, Chung LM, et al. Differential control of Zapl-regulated genes in response to zinc deficiency in Saccharomyces cerevisiae[J]. BMC Genomics, 2008, 9(1 ): 370.

共引文献10

同被引文献23

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部