摘要
主要研究了一类带有食饵避难捕食-竞争反应扩散系统的动力学行为,应用特征方程理论和Laypunov函数方法研究了系统平衡点的稳定性,运用拓扑度方法给出了非常值正稳态解的存在性.
The qualitative properties of the predation-competition reaction diffusion system with the prey refuge are considered.The conditions for the local asymptotic stability of the unique positive constant solution of the system are given by the eigenvalue function.In addition,it is shown that a priori upper and lower bounds for positive steady states of the system are established.Finally,the method of topological degree has been used to derive a set of sufficient conditions for the existence of at least one strictly positive non-trivial solution.
作者
刘晓慧
王静
LIU Xiao-hui;WANG Jing(School of Mathematics and Statistics, Northeast Normal University,Changchun 130024,China)
出处
《东北师大学报(自然科学版)》
CAS
CSCD
北大核心
2018年第2期26-34,共9页
Journal of Northeast Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(11471070)
关键词
食饵避难
稳定性
拓扑度
非常值正稳态解
prey refuge
diffusion
topological degree
non-trivial solution