期刊文献+

Dual-function baicalin and baicalin-loaded poly(lactic-co-glycolic acid) nanoparticles: Immune activation of dendritic cells and arrest of the melanoma cell cycle at the G2/M phase

Dual-function baicalin and baicalin-loaded poly(lactic-co-glycolic acid) nanoparticles: Immune activation of dendritic cells and arrest of the melanoma cell cycle at the G2/M phase
原文传递
导出
摘要 Accumulating evidence suggests that the flavone glycoside baicalin has immunomodulatory effects and antitumor potential. However, its weak stability in solution, poor absorption, and low bioavailability limit its clinical application. To overcome these disadvantages, we developed baicalin-loaded poly(lactic-co-glycolic acid) nanoparticles (PLGA-B) of small size. Next, we evaluated the dual function of immunotherapy and chemotherapy for PLGA-B using immune-related cells and tumor cells. Results showed that PLGA-B were spherical, with a particle size -120 nm and narrow size distribution with an excellent polydispersity index of 0.103. In vitro experiments revealed that baicalin and PLGA-B could activate dendritic cells (DCs) to have higher expression of surface marker molecules and costimulatory molecules than those of control cells. Baicalin and PLGA-B could trigger apoptosis in melanoma (B16) cells via cell-cycle arrest at the G2/M phase. These data suggest that PLGA-B have important roles in activating DCs and killing melanoma cells. Our study could lay a foundation for melanoma treatment through a combined strategy of immunotherapy and chemotherapy. Accumulating evidence suggests that the flavone glycoside baicalin has immunomodulatory effects and antitumor potential. However, its weak stability in solution, poor absorption, and low bioavailability limit its clinical application. To overcome these disadvantages, we developed baicalin-loaded poly(lactic-co-glycolic acid) nanoparticles (PLGA-B) of small size. Next, we evaluated the dual function of immunotherapy and chemotherapy for PLGA-B using immune-related cells and tumor cells. Results showed that PLGA-B were spherical, with a particle size -120 nm and narrow size distribution with an excellent polydispersity index of 0.103. In vitro experiments revealed that baicalin and PLGA-B could activate dendritic cells (DCs) to have higher expression of surface marker molecules and costimulatory molecules than those of control cells. Baicalin and PLGA-B could trigger apoptosis in melanoma (B16) cells via cell-cycle arrest at the G2/M phase. These data suggest that PLGA-B have important roles in activating DCs and killing melanoma cells. Our study could lay a foundation for melanoma treatment through a combined strategy of immunotherapy and chemotherapy.
出处 《Particuology》 SCIE EI CAS CSCD 2018年第2期64-71,共8页 颗粒学报(英文版)
基金 This work was supported financially by the National Science and Technology Major Project of China (2014ZX09102045- 008), National Science Foundation of China (21476243 and 81274101), Fundamental Research Funds for the Central Universities (DL13EA03-03 and 2572016EAJ1), Natural Science Foundation of Heilongjiang Province (C2015051) and 973 Program (2013CB531500).
关键词 Baicalin Baicalin-loaded PLGA nanoparticles Dendritic cells activation Anti-tumor Baicalin Baicalin-loaded PLGA nanoparticles Dendritic cells activation Anti-tumor
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部