期刊文献+

Removal of inhalable particles from coal and refuse combustion by agglomeration with solid nuclei 被引量:2

Removal of inhalable particles from coal and refuse combustion by agglomeration with solid nuclei
原文传递
导出
摘要 Airborne inhalable particles are a potent environmental pollutant. Formed via industrial processes, separation of these particles is difficult using conventional clean up techniques. In this work, solid nuclei particles of different chemical compositions were introduced into an agglomeration chamber with simulated flue gases to investigate their ability to remove these particles. Organic nuclei were able to capture more inhalable particles from coal-derived fly ash than inorganic nuclei, though these proved more effective for the agglomeration of inhalable particles in refuse-derived fly ash. Increasing the diameter of the solid nuclei benefitted the agglomeration process for both types of ash. Varying the local humidity changed adhesion between the particles and encouraged them to aggregate. Increasing the relative humidity consistently increased particle agglomeration for the refuse-derived ash. For coal-derived fly ash, the removal efficiency increased initially with relative humidity but then further increases in humidity had no impact on the relatively high efficiencies. After agglomeration in an atmosphere of 62% relative humidity, the mean mass diameter of inhalable particles in the coal-derived fly ash increased from 3.3 to 9.2 μm. For refuse-derived fly ash, agglomeration caused the percentage of particles that were less than 2μm to decrease from 40% to 15%. After treatment at a relative humidity of 61%, the mean size of inhalable particles exceeded 10 μm. Airborne inhalable particles are a potent environmental pollutant. Formed via industrial processes, separation of these particles is difficult using conventional clean up techniques. In this work, solid nuclei particles of different chemical compositions were introduced into an agglomeration chamber with simulated flue gases to investigate their ability to remove these particles. Organic nuclei were able to capture more inhalable particles from coal-derived fly ash than inorganic nuclei, though these proved more effective for the agglomeration of inhalable particles in refuse-derived fly ash. Increasing the diameter of the solid nuclei benefitted the agglomeration process for both types of ash. Varying the local humidity changed adhesion between the particles and encouraged them to aggregate. Increasing the relative humidity consistently increased particle agglomeration for the refuse-derived ash. For coal-derived fly ash, the removal efficiency increased initially with relative humidity but then further increases in humidity had no impact on the relatively high efficiencies. After agglomeration in an atmosphere of 62% relative humidity, the mean mass diameter of inhalable particles in the coal-derived fly ash increased from 3.3 to 9.2 μm. For refuse-derived fly ash, agglomeration caused the percentage of particles that were less than 2μm to decrease from 40% to 15%. After treatment at a relative humidity of 61%, the mean size of inhalable particles exceeded 10 μm.
出处 《Particuology》 SCIE EI CAS CSCD 2018年第2期127-133,共7页 颗粒学报(英文版)
基金 The authors wish to acknowledge the financial supports from the National Natural Science Foundation of China (Contract No. 21206080) and from the Major Project of Shandong Province for Research and Development (Contract No. 2015GSF117026).
关键词 lnhalable particle Agglomeration Solid nuclei Fly ash Air pollution Relative humidity lnhalable particle Agglomeration Solid nuclei Fly ash Air pollution Relative humidity
  • 相关文献

参考文献2

二级参考文献17

共引文献89

同被引文献21

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部