期刊文献+

CFD simulation of gas-solid flow patterns in a downscaled combustor-style FCC regenerator

CFD simulation of gas-solid flow patterns in a downscaled combustor-style FCC regenerator
原文传递
导出
摘要 To investigate the gas-solid flow pattern of a combustor-style fluid catalytic cracking regenerator, a laboratory-scale regenerator was designed. In scaling down from an actual regenerator, large-diameter hydrodynamic effects were taken into consideration. These considerations are the novelties of the present study. Applying the Eulerian-Eulerian approach, a three-dimensional computational fluid dynamics (CFD) model of the regenerator was developed. Using this model, various aspects of the hydrodynamic behavior that are potentially effective in catalyst regeneration were investigated. The CFD simulation results show that at various sections the gas-solid flow patterns exhibit different behavior because of the asymmetric location of the catalyst inlets and the lift outlets. The ratio of the recirculated catalyst to spent catalyst determines the quality of the spent and recirculated catalyst mixing and distribution because the location and quality of vortices change in the lower part of the combustor. The simulation results show that recirculated catalyst considerably reduces the air bypass that disperses the catalyst particles widely over the cross section. Decreasing the velocity of superficial air produces a complex flow pattern whereas the variation in catalyst mass flux does not alter the flow pattern significantly as the flow is dilute. To investigate the gas-solid flow pattern of a combustor-style fluid catalytic cracking regenerator, a laboratory-scale regenerator was designed. In scaling down from an actual regenerator, large-diameter hydrodynamic effects were taken into consideration. These considerations are the novelties of the present study. Applying the Eulerian-Eulerian approach, a three-dimensional computational fluid dynamics (CFD) model of the regenerator was developed. Using this model, various aspects of the hydrodynamic behavior that are potentially effective in catalyst regeneration were investigated. The CFD simulation results show that at various sections the gas-solid flow patterns exhibit different behavior because of the asymmetric location of the catalyst inlets and the lift outlets. The ratio of the recirculated catalyst to spent catalyst determines the quality of the spent and recirculated catalyst mixing and distribution because the location and quality of vortices change in the lower part of the combustor. The simulation results show that recirculated catalyst considerably reduces the air bypass that disperses the catalyst particles widely over the cross section. Decreasing the velocity of superficial air produces a complex flow pattern whereas the variation in catalyst mass flux does not alter the flow pattern significantly as the flow is dilute.
出处 《Particuology》 SCIE EI CAS CSCD 2018年第4期96-108,共13页 颗粒学报(英文版)
关键词 Fluid catalytic cracking Combustor-style regeneratorLarge-diameter fluidized bed Hydrodynamics Gas-solid flow patternRecirculated catalyst Fluid catalytic cracking Combustor-style regeneratorLarge-diameter fluidized bed Hydrodynamics Gas-solid flow patternRecirculated catalyst
  • 相关文献

参考文献1

二级参考文献2

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部