期刊文献+

Global geometrical optics method for vector-valued Schrodinger problems

Global geometrical optics method for vector-valued Schrodinger problems
原文传递
导出
摘要 We extend the theory of global geometrical optics method, proposed originally for the linear scalar high-frequency wave-like equations in [Commun. Math. Sci., 2013, 11(1): 105-140], to the more general vector- valued Schrodinger problems in the semi-classical regime. The key ingredient in the global geometrical optics method is a moving frame technique in the phase space. The governing equation is transformed into a new equation but of the same type when expressed in any moving frame induced by the underlying Hamiltonian flow. The classical Wentzel-Kramers-Brillouin (WKB) analysis benefits from this treatment as it maintains valid for arbitrary but fixed evolutionary time. It turns out that a WKB-type function defined merely on the underlying Lagrangian submanifold can be obtained with the help of this moving frame technique, and from which a uniform first-order approximation of the wave field can be derived, even around caustics. The general theory is exemplified by two specific instances. One is the two-level SchrSdinger system and the other is the periodic SchrSdinger equation. Numerical tests validate the theoretical results. We extend the theory of global geometrical optics method, proposed originally for the linear scalar high-frequency wave-like equations in [Commun. Math. Sci., 2013, 11(1): 105-140], to the more general vector- valued Schrodinger problems in the semi-classical regime. The key ingredient in the global geometrical optics method is a moving frame technique in the phase space. The governing equation is transformed into a new equation but of the same type when expressed in any moving frame induced by the underlying Hamiltonian flow. The classical Wentzel-Kramers-Brillouin (WKB) analysis benefits from this treatment as it maintains valid for arbitrary but fixed evolutionary time. It turns out that a WKB-type function defined merely on the underlying Lagrangian submanifold can be obtained with the help of this moving frame technique, and from which a uniform first-order approximation of the wave field can be derived, even around caustics. The general theory is exemplified by two specific instances. One is the two-level SchrSdinger system and the other is the periodic SchrSdinger equation. Numerical tests validate the theoretical results.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2018年第3期579-606,共28页 中国高等学校学术文摘·数学(英文)
基金 Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 11371218, 91630205).
关键词 Global geometrical optics method Hamiltonian system unitary representation CAUSTICS semiclassical approximation Global geometrical optics method Hamiltonian system unitary representation caustics semiclassical approximation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部