期刊文献+

基于BFOA和K-means的复合入侵检测算法 被引量:4

A hybrid intrusion detection system based on BFOA and K-means algorithm
原文传递
导出
摘要 K-means算法对初始聚类中心及簇数K的选择敏感,导致聚类结果不稳定,会对IDS(intrusion detection system,IDS)的检测结果产生重要影响。针对该问题,提出一种基于细菌觅食优化算法(bacterial foraging optimization algorithm,BFOA)和K-means相复合的入侵检测算法(HIDS)。HIDS算法首先基于距离阈值方法动态确定簇数K,再利用BFOA优化生成初始聚类中心,使得选择的初始聚类中心达到全局最优,从而解决了K-means算法的聚类结果不稳定的问题,进而提高入侵检测的准确率。为验证算法的有效性和测试算法性能,将HIDS在KDD99数据集上进行试验测试,入侵检测率可达98.33%。试验结果表明该方法能够有效提高检测率并且降低误检率。 The K-means algorithm was sensitive to the selection of the initial clustering center and the number of clusters K,which led to the instability of the clustering results and would have a significant impact on the detection results of IDS( instrusion detection system,briefly named as IDS). To solve this problem,a hybrid intrusion detection algorithm( HIDS) based on BFOA( bacterial foraging optimization algorithm) and K-means was proposed. The value of K could be determined dynamically based on the distance threshold method. BFOA could be used to optimize the initial cluster centers,which made the initial clustering centers to be globally optimal. Therefore,the instability of the clustering results of K-means algorithm was solved. The detection rate was 98. 33% by performing an experimental test on the KDD99 dataset. The experimental results showed that the method could effectively improve the detection rate and reduce the false detection rate.
作者 肖苗苗 魏本征 尹义龙 XIAO Miaomiao;WEI Benzheng;YIN Yilong(College of Science and Technology, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China;Computational Medicine Lab, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China;School of Software Engineering, Shandong University, Jinan 250101, Shandong, China)
出处 《山东大学学报(工学版)》 CAS 北大核心 2018年第3期115-119,126,共6页 Journal of Shandong University(Engineering Science)
基金 国家自然科学基金资助项目(U1201258 61572300) 山东省自然科学基金资助项目(ZR2015FM010) 山东高等学校科技计划资助项目(J15LN20) 山东省医药卫生科技发展计划资助项目(2016WS0577) 山东省中医药科技发展计划资助项目(2015-026)
关键词 入侵检测 BFOA K-MEANS算法 HIDS 检测率 intrusion detection bacterial foraging optimization algorithm K-means algorithm HIDS detection rate
  • 相关文献

参考文献1

二级参考文献11

  • 1陆林花,王波.一种改进的遗传聚类算法[J].计算机工程与应用,2007,43(21):170-172. 被引量:26
  • 2McQueen J. Some methods for classification and analysis of multivariate observations [C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. 1967.
  • 3Alsabti K,Ranka S,Singh V. An efficient k means clustering al gorithm[C]//IPPS/SPDP Workshop on High Performance Data Mining. Orlando, Florida, 1998.
  • 4Ester M, Kriegel H P, Sander J, et al. A density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise[C]//Proceeding the 2nd International Conference on Knowledge Discovery and Dta Mining(KDD). Portland, 1996.
  • 5http://archive, ics. uci. edu/ml/datasets, html.
  • 6程佳.支持向量机与艮均值聚类融合算法研究[J].辽宁师范大学,2008.
  • 7RichardO,DudaPE,HartDG,etal.模式分类(第二版)[M].李宏东,姚天翔,等译.北京:机械工业出版社,2007.
  • 8VAPNIK V N.统计学习理论[M].许建华,张学工,译.北京:电子工业出版社,2004.
  • 9张里,彭小峰.数据挖掘在网络入侵检测系统中的应用[J].重庆工学院学报(自然科学版),2008,22(8):135-138. 被引量:3
  • 10曹志宇,张忠林,李元韬.快速查找初始聚类中心的K_means算法[J].兰州交通大学学报,2009,28(6):15-18. 被引量:19

共引文献33

同被引文献33

引证文献4

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部