期刊文献+

基于非下采样剪切波变换的PET/SPECT和MR图像融合 被引量:3

PET/SPECT and MR Image Fusion Based on Nonsubsampled Shearlet Transform
下载PDF
导出
摘要 目的针对PET/SPECT伪彩色图像空间分辨率低而MR灰度图像空间分辨率高的融合问题,探究一种新方法来提升PET/SPECT和MR图像的融合质量。方法对待融合图像进行非下采样剪切波变换(nonsubsampled shearlet transform,NSST),得到各自的低频子带和高频子带,然后采用绝对值取大规则去融合高频子带,采用本文提出的基于Haar小波的能量(Haar wavelet based energy,HWE)规则去融合低频子带,最后对融合后的高、低频分量进行逆NSST从而获得融合图像。采用40组脑PET/SPECT和MR图像对本文所提出方法进行测试,并与其他典型的融合方法进行比较。结果本文方法与基于DTCWT,NSCT,NSCT-SR和NSST的融合方法进行测试,结果表明,本文方法在4个指标上最优,1个指标上次优。结论本文方法在PET/SPECT和MR图像的融合中具有优越性,可提升此类医学影像在辅助临床诊断和放疗手术计划中的精准性。 Objective Since PET/SPECT images are pseudo-color and have low spatial resolution while MR images are gray and have high spatial resolution,it is difficult but necessary to study a novel fusion method to improve the fusion quality of PET/SPECT and MR images. Methods The nonsubsampled shearlet transform( NSST) was performed on the input images to acquire the low frequency subbands and the high frequency subbands. Then the high frequency subbands were merged by the absolute-maximum rule while the low frequency subbands were merged by the proposed Haar wavelet-based energy( HWE) rule. Finally the fused image was obtained by performing the inverse NSST on the merged subbands. The proposed method was tested on forty pairs of PET/SPECT and MR images and compared with several popular fusion methods. Results The proposed method is tested with the fusion method of other DTCWT,NSCT,NSCT-SR and NSST. The results show that the proposed method is optimal on 4 indices and the 1 index is second. Conclusion The proposed method has advantage in fusing PET/SPECT and MR images,which can improve the precision of clinical diagnosis and radiotherapy treatment planning aided by these medical images.
作者 邱陈辉 赵奋强 王媛媛 夏顺仁 Qiu Chenhui;Zhao Fenqiang;Wang Yuanyuan;Xia Shunren(The Key Lab of Biomedical Engineering, Ministry of Education, Zhejiang Universit;Zhejiang Provincial Key Lab of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Hangzhou Zhejiang, 310027, China)
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2018年第3期353-358,共6页 Space Medicine & Medical Engineering
基金 国家重点研发计划项目(2016YFC1306600)
关键词 图像融合 PET/SPECT图像 MR图像 非下采样剪切波变换 image fusion PET/SPECT images MR images nonsubsampled shearlet transform
  • 相关文献

参考文献2

二级参考文献76

  • 1郭素红,卢洁,于常海.生物标记检测在神经胶质瘤诊断中的研究进展[J].吉林医药学院学报,2009,30(6):352-357. 被引量:2
  • 2周东海,何宁,黄进,张静,赵志文,李炳翠,李刚,位春萍.幕上星形细胞瘤瘤周水肿MRI表现与P53蛋白的对照研究[J].中国临床医学影像杂志,2007,18(3):167-170. 被引量:2
  • 3Boudreau CR, Yang I,Liau LM. Gliomas : advances in mo-lecular analysis and characterization [ J]. Surgical Neurology,2005,64(4) : 286-294.
  • 4Saitta L, Heese 0,Forster AF, et al. Signal intensity in T2'magnetic resonance imaging is related to brain glioma grade[J]. European Radiology, 2011, 21(5) : 1068-1076.
  • 5Arvinda H, Kesavadas C, Sarma P, et al. Glioma grading:sensitivity,specificity,positive and negative predictive valuesof diffusion and perfusion imaging[ J]. Journal of Neuro-On-cology, 2009, 94(1); 87-96.
  • 6Brown R, Zlatescu M, Sijben D, et al. The Use of MagneticResonance Imaging to Noninvasively Detect Genetic Signaturesin Oligodendroglioma[ J]. Clinical Cancer Research,2008,14(8) : 2357-2362.
  • 7Drabycz S, Rolddn G, de Robles P, et al. An analysis of im-age texture, tumor location,and MGMT promoter methylationin glioblastoma using magnetic resonance imaging[ J]. Neuro-Image, 2010, 49(2) : 1398-1405.
  • 8Levner I, Drabycz S,Roldan G, et al. Predicting MGMTmethylation status of glioblastomas from MRI texture[ C]. In:Proceedings of the 12th International Conference on MedicalImage Computing and Computer-Assisted Intervention : PartII. London, UK: Springer Press, 2009 : 522-530.
  • 9Law M, Yang S, Babb JS, et al. Comparison of cerebralblood volume and vascular permeability from dynamic suscep-tibility contrast-enhanced perfusion MR imaging with gliomagrade [ J] . American Journal of Neuroradiology,2004,25(5): 746-755.
  • 10Kono K, Yuichi I,Keiko N, et al. The role of diffusion-weighted imaging in patients with brain tumors [ J]. AmericanJournal of Neuroradiology, 2001,22(6) : 1081-1088.

共引文献7

同被引文献26

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部