期刊文献+

干涉偏差对四束圆偏振光干涉的影响 被引量:1

Influence of Interference Deviation on Four-Beam Interference with Circular Polarization
原文传递
导出
摘要 通过理论计算和MATLAB模拟讨论四束右旋圆偏振干涉光干涉后的光强度分布。当四束干涉光对称分布时,可得均匀的二维周期性强度分布。理论研究发现,干涉强度的最大值出现在3条直线斜率分别为S1=+1,S2=!,S3=-1的交点处,且在x和y方向存在一定的周期dx=dy=λ/sinθ。入射角的不同只改变周期的大小,不改变干涉强度分布的图样。研究发现,当其中一束干涉光发生偏差(θ1,α1)时,决定干涉强度的其中2条直线的斜率Sl(l=1,2)以及x和y方向的周期dxl,dyl(l=1,2,3)均受影响。 The interference intensity distribution of four-beam interference with right-hand circular polarization is theoretically studied and simulated with MATLAB. The impact of incident angle on the intensity distribution of interference is studied. The results show that there is a uniform two-dimensional periodic intensity distribution when four beams show symmetrical distribution. The peak intensity appears at the intersection of three lines with the slopes of S1=+1,S2=∞,S3=-1, respectively. And there are certain periods dx =dy =3,/sin θ in the x and y directions. When incidence angle 0 changes, the period of the pattern changes accordingly but not the symmetricity of pattern. However, when the incident angle or azimuthal angle (θ1 , α1 ) changes, both the slopes Sl (l = 1,2) and periods d,t ,d.,t (l=1,2,3) change.
作者 吴晓 Wu Xiao(School of Science and Technology, Zhejiang International Studies University, Hangzhou, Zhejiang 310021, China)
出处 《激光与光电子学进展》 CSCD 北大核心 2018年第6期268-273,共6页 Laser & Optoelectronics Progress
关键词 激光光学 干涉 干涉偏差 斜率 强度调制 laser optics interference interference deviation slope intensity modulation
  • 相关文献

参考文献12

二级参考文献115

  • 1Si J H, Qiu J R, Zhai J F, Shen Y Q, Hirao K 2002 Appl. Phys. Lett. 80 359.
  • 2Qian G D, Guo J Y, Wang M Q, Si J H, Qiu J R, Hirao K 2003 Appl. Phys. Lett. 83 2327.
  • 3Li Y, Cui H B, Qi F J, Yang H, Gong Q H 2008 Nanotechnology 19 375304.
  • 4Ma H L,Yang J Y,Lu B,Ma G H 2007 Chin. Phys. 16 3328.
  • 5余本海 戴能利 王英 李玉华 季玲玲 郑启光 陆培祥.物理学报,2007,56:5821-5821.
  • 6Campbell M, Sharp D N, Harrison M T, Denning R G, Turberfield A J 2:000 Nature 404 53.
  • 7LaiN D, Liang W P, Lin J H, Hsu C C, Lin C H 2005 Opt. Express 13 9605.
  • 8Divliansky I B, Shishido A, Khoo I C, Mayer T S, Pena D, Nishimura S, Keating C D, and Mallouk T E 2001 Appl. Phys. Lett. 79 3392.
  • 9Kondo T, Juodkazis S, Mizeikis V, Misawa H, Matsuo S 2006 Opt.Express 14 7943.
  • 10Kondo T, Matsuo S, Juodkazis S, Misawa H 2001 Appl. Phys. Lett. 79 725.

共引文献68

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部