期刊文献+

熔石英元件修复点交联分布对光传输影响的数值模拟

Numerical Simulation of Effect of Cross-Linked Distribution of Mitigated Pits in Fused Silica Elements on Light Transport
原文传递
导出
摘要 建立了熔石英元件修复点交联分布数值模拟模型,利用标量衍射理论结合快速傅里叶变换算法,分析了351nm激光辐照下修复区域对下游光传输的调制影响。研究结果表明,交联修复区域对下游光传输的调制主要受修复点间交联程度的影响,随着交联程度的增大,调制光场极大值迅速增大后快速减小,其分布位置先逐渐靠近后迅速远离修复元件出光面。光场调制随着传输距离的增大先快速增大后迅速减小。优化交联修复区域形貌结构参数可有效避免下游元件发生级联损伤。 A numerical simulation model based on the cross-linked distribution of mitigated pits in the fused silica elements is proposed.The modulation effect of the mitigation area on the downstream light transport under the351 nm laser irradiation is studied by the scalar diffraction theory and the fast Fourier transform algorithm.The results indicate that the modulation of the cross-linked mitigation area on the downstream light transport is mainly determined by the cross-linking degree of mitigated pits.With the increase of cross-linking degree,the local maximum of light modulation first increases rapidly and then decreases very fast,and the corresponding location first approaches and then is far away from the output surface of the mitigated element.With the increase of propagation distance,the light modulation first increases rapidly and then decreases very fast.The parameter optimization of the morphological structure of the mitigation area can avoid effectively the cascading damages among the downstream elements.
作者 白阳 蒋晓龙 蒋一岚 张丽娟 张传超 廖威 陈静 周海 袁晓东 Bai Yang;Jiang Xiaolong;Jiang Yilan;Zhang Lijuan;Zhang Chuanchao;Liao Wei;Chen Jing;Zhou Hai;Yuan Xiaodong(Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China)
出处 《中国激光》 EI CAS CSCD 北大核心 2018年第6期66-70,共5页 Chinese Journal of Lasers
关键词 激光光学 熔石英 光传输 CO2激光损伤修复 标量衍射理论 laser optics fused silica light transport damage repair by CO2 laser scalar diffraction theory
  • 相关文献

参考文献6

二级参考文献71

  • 1张庆,刘秋武.计算机模拟任意形状衍射屏的衍射[J].物理实验,2006,26(10):14-17. 被引量:19
  • 2波恩M 沃尔夫E.光学原理[M].北京:科学出版社,1978..
  • 3吕乃光.傅里叶光学[M].北京:机械工业出版社,1998.92-102.
  • 4Carr C W, Bude J D and Mange P De 2010 Phys. Rev. B 82 184304.
  • 5Deng H X, Zu X T, Xiang X and Sun K 2010 Phys Rev Lett. 105 113603.
  • 6Chen X Q, Zu X T, Zheng W G, Jiang X D, Lu H B, Ren H, Zhang Y Z and Liu C M 2006 Acta Phys. Sin. 55 1201 (in Chinese).
  • 7Xiang X, Chen M, Chen M Y, Zu X T, Zhu S and Wang L M 2010 Chin Phys. B 19 018107.
  • 8Deng H X, Xiang X, Sun K, Yuan X D, Jiang X D, Zheng W G, Gao F and Zu X rI' 2010 Chin Phys. B 19 107801.
  • 9Manyalibo, Matthews J, Bass Isaac L and Gabriel Gus M 2007 Proc. SPIE 6720 67200A.
  • 10Brusasco R M, Penetrante B M, Butler J A and Hrubesh L W 2002 Proc. SPIE 4679 40.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部