期刊文献+

音乐信号稀疏分析方法研究

A Novel Sparse Analysis Method for Music Signals
下载PDF
导出
摘要 利用稀疏分解思想对音乐的类型、体裁、调式进行分析的方法在音乐的量化分析中占有重要地位,并已得到了广泛的应用.在传统的音乐稀疏化分析方法中,较少考虑系数矩阵内稀疏性能与音乐类别的联系,为了解决这一问题,我们设计了一个由稀疏分解结果获得的稀疏性能评价指标对音乐样本稀疏质量和重构效果进行了度量,并通过实验验证了该指标与重构误差及音乐体裁、调式存在明显的相关性,结果未来可以用于音乐类型分析工作的可靠参照. The idea of using sparse decomposition to analyze music genre,pitch and melody has been widely used in the quantitative analysis of music.In traditional music sparse analysis,the relationship between the sparsity of the coefficient matrix and music genre is usually ignored.We designed a performance metric on the sparsity of the sparse representation matrix,so the sparse and reconstruction performance of music samples can be evaluated.The experiment result shows that this metric was correlated to the music genre,melody and a reliable performance index on music analysis.
作者 丰上 徐忠亮 马琳 李海峰 FENG Shang;XU Zhongliang;MA Lin;LI Haifeng(School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China)
出处 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2018年第3期328-334,共7页 Journal of Fudan University:Natural Science
基金 国家自然科学基金(61671187) 深圳市基础研究项目(JCYJ20150929143955341) 语言语音教育部-微软重点实验室开放基金(HIT.KLOF.20150XX HIT.KLOF.20160XX)
关键词 稀疏分解 音乐分类 音乐信息提取 重构误差 sparse decomposition music classification music information retrieval reconstruction error
  • 相关文献

参考文献1

二级参考文献10

  • 1Fujishima T.Realtime chord recognition of musical sound: a system using common lisp music[C]//Proc Int Comput Music Conf (ICMC), Beijing, China, 1999:464-467.
  • 2Gomez E,Herrera RAutomatic extraction of tonal metadata from polyphonic audio recordings[C]//Audio Engineering Society, London, 2004.
  • 3Lee K.Automatic chord recognition from audio using enhanced pitch class profile[C]//Proc Int Comput Music Conf (ICMC),New Orleans, LA, 2006.
  • 4Sheh A, Ellis D.Chord segmentation and recognition using EM-trained hidden Markov models[C]//Proc Int Conf MusicInf Retrieval (ISMIR) , Baltimore, MD, 2003: 185-191.
  • 5Wright J, Yang A, Ganesh A, et al.Robust face recognition via sparse representation[J].IEEE Trans on Pattern Anal- ysis and Machine Intelligence, 2009,31 (2) : 210-227.
  • 6Ellis D.Beat tracking by dynamic programming[J].New Music Research, Special Issue on Beat and Tempo Ex- traction, 2007,36 ( 1 ) : 51-60.
  • 7Brown J.Calculation of a constant Q spectral transform[J].J Acoust Soc Amer, 1991,89( 1 ) :425-434.
  • 8Donoho D.For most large underdetermined systems of linear equations the minimal l1 -norm solution is also the sparsest solution[J].Comm on Pure and Applied Math, 2006,59 (6) : 797-829.
  • 9Harte C, Sandier M, Abdallah S,et al.Symbolic repre- sentation of musical chords:a proposed syntax for text annotations[C]//Proc Int Conf Music Inf Retrieval (ISMIR), London UK, 2005 : 66-71.
  • 10Bello J, Pickens J.A robust mid-level representation for harmonic content in music signals[C]//Proc Int Conf Music Inf Retrieval (ISMIR), London, UK, 2005 : 304-311.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部